Log in

Analysis and numerical simulation of a reaction–diffusion mathematical model of atherosclerosis

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Atherosclerosis is a chronic inflammatory disease which occurs due to plaque accumulation in the intima, the innermost layer of the artery. In this paper, a simple reaction–diffusion mathematical model of the plaque formation process comprising of oxidized LDL and macrophages has been developed. Linear stability analysis of the non-spatial model leads to the existence of global stability of the kinetic system. This reveals that the non-spatial system can withstand a substantial change in the significant model parameter values which can be taken forward for further clinical investigations. Numerical bifurcation analysis of the non-spatial system confirms the existence of Hopf bifurcation with respect to two significant model parameters. The biological importance of these bifurcation diagrams is discussed in detail. The significance of the model presented in this research paper provides a clear insight into the role of the key constituents, oxidized LDL and macrophages, involved in the plaque-forming process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abi Younes G, El Khatib N (2022) Math Model Nat Phenom 17:5

    Article  Google Scholar 

  • Alimohammadi S (2017) Proc Inst Mech Eng Part H J Eng Med 231(5):378

    Article  Google Scholar 

  • Anlamlert W, Lenbury Y, Bell J (2017) Adv Differ Equ 2017(1):195

    Article  Google Scholar 

  • Bulelzai MA, Dubbeldam JL (2012) J Theor Biol 297:1

    Article  Google Scholar 

  • Calvez V, Ebde A, Meunier N, Raoult A (2009) ESAIM Proc (EDP Sci) 28:1–12

    Article  Google Scholar 

  • Chalmers AD, Cohen A, Bursill CA, Myerscough MR (2015) J Math Biol 71(6–7):1451

    Article  Google Scholar 

  • Cobbold C, Sherratt J, Maxwell S (2002) Bull Math Biol 64(1):65

    Article  Google Scholar 

  • Cohen A, Myerscough MR, Thompson RS (2014) Bull Math Biol 76(5):1117

    Article  Google Scholar 

  • Crowther MA (2005) ASH Educ Program Book 2005(1):436

    Google Scholar 

  • Friedman A, Hao W (2015) Bull Math Biol 77(5):758

    Article  Google Scholar 

  • Gijsen FJ, Wentzel JJ, Thury A, Mastik F, Schaar JA, Schuurbiers JC, Slager CJ, van der Giessen WJ, de Feyter PJ, van der Steen AF (2008) Am J Physiol Heart Circ Physiol 295(4):H1608

    Article  Google Scholar 

  • Hale J (1969) Ordinary differential equations. Pure and applied mathematics. Wiley-Interscience, New York

    Google Scholar 

  • Hao W, Friedman A (2014) PLoS One 9(3):e90497

    Article  Google Scholar 

  • Homma S, Hirose N, Ishida H, Ishii T, Araki G et al (2001) STROKE-DALLAS- 32(4):830

    Article  Google Scholar 

  • Ibragimov A, McNeal C, Ritter L, Walton J (2005) Math Med Biol 22(4):305

    Article  Google Scholar 

  • Kozusko F, Bourdeau M (2007) Cell Prolif 40(6):824

    Article  Google Scholar 

  • Libby P, Ridker PM, Maseri A (2002) Circulation 105(9):1135

    Article  Google Scholar 

  • Malek AM, Alper SL, Izumo S (1999) JAMA 282(21):2035

    Article  Google Scholar 

  • Marušić M, Vuk-Pavlovic S, Freyer JP et al (1994) Bull Math Biol 56(4):617

    Google Scholar 

  • Mel’nyk T (2019) Int J Biomath 12(02):1950014

    Article  Google Scholar 

  • Ougrinovskaia A, Thompson RS, Myerscough MR (2010) Bull Math Biol 72(6):1534

    Article  Google Scholar 

  • Parton A, McGilligan V, O’kane M, Baldrick FR, Watterson S (2015) Brief Bioinform 17(4):562

    Article  Google Scholar 

  • Ross R, Glomset J, Harker L (1977) Am J Pathol 86(3):675

    Google Scholar 

  • Simonetto C, Heier M, Peters A, Kaiser JC, Rospleszcz S (2022) Am J Epidemiol 191 (10):1766 From atherosclerosis to myocardial infarction–a process-oriented model investigating the role of risk factors. 191(10):1766–1775

Download references

Acknowledgements

All the authors are highly grateful to the anonymous reviewers for their fruitful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasmita Mukherjee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Mukherjee, A. Analysis and numerical simulation of a reaction–diffusion mathematical model of atherosclerosis. Model. Earth Syst. Environ. 9, 3517–3526 (2023). https://doi.org/10.1007/s40808-022-01664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-022-01664-4

Keywords

Mathematics Subject Classification

Navigation