Log in

Effect of Corrosion Media on Biofilm Detachment and the Corrosion Mechanism of Serratia marcescens on Carbon Steel in River Water

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The bacterial biofilms formed on metal surfaces play an important role in the corrosion of the metal. Biofilm detachment can greatly influence the corrosion rate. Since the biofilms formed by certain strains of Serratia marcescens are known to get sloughed after prolonged surface exposure, studying the effect of corrosion media on this phenomenon and the corrosion rate will help in understanding the corrosion mechanism of S. marcescens. In this work, carbon steel was exposed to multiple systems containing S. marcescens isolated from treated river water used as a coolant in an oil refinery, referred to as industrial water (IW). The bacterial cultures were anaerobically cultivated in the American Petroleum Institute (API) growth medium and identified using 16S rRNA gene sequencing. Biofilm morphology was assessed through Light microscopy and Confocal Laser Scanning Microscopy (CLSM). The conditions required for biofilm sloughing were investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, weight loss and surface morphological studies in four different media. While sterilized IW served as a control, biofilm detachment occurred during polarization studies only in the system where the metal sample was exposed to IW containing S. marcescens and the API medium. However, detachment did not occur during other analyses and in similar systems without the API medium or when nitrate ions were added to the API medium. Based on these observations, the mechanism adopted by S. marcescens for its growth and the corrosion of carbon steel under various conditions could be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Lou Y, Chang W, Cui T et al (2021) Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: a review. Bioelectrochemistry 141:107883. https://doi.org/10.1016/j.bioelechem.2021.107883

    Article  CAS  PubMed  Google Scholar 

  2. George RP, Muraleedharan P, Sreekumari KR et al (2003) Influence of surface characteristics and microstructure on adhesion of bacterial cells onto a type 304 stainless steel. Biofouling 19(1):1–8. https://doi.org/10.1080/08927010290031017

    Article  CAS  PubMed  Google Scholar 

  3. George R, Muraleedharan P, Parvathavarthini N et al (2000) Microbiologically influenced corrosion of AISI type 304 stainless steels under fresh water biofilms. Mater Corros 51:213–218. https://doi.org/10.1002/(SICI)1521-4176(200004)51:4<213::AID-MACO213>3.0.CO;2-J

    Article  CAS  Google Scholar 

  4. Gubner R, Beech IB (2000) The effect of extracellular polymeric substances on the attachment of pseudomonas NCIMB 2021 to AISI 304 and 316 stainless steel. Biofouling 15(1–3):25–36. https://doi.org/10.1080/08927010009386295

    Article  CAS  PubMed  Google Scholar 

  5. Lv M, Du M (2018) A review: microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria. Rev Environ Sci Bio/Technol 17(3):431–446. https://doi.org/10.1007/s11157-018-9473-2

    Article  CAS  Google Scholar 

  6. Natarajan K (2013) Biofouling and microbially influenced corrosion of stainless steels. In: A century of stainless steels, advanced materials research, vol 794. Trans Tech Publications, Bäch, pp 539–555. https://doi.org/10.4028/www.scientific.net/AMR.794.539

  7. Cote C, Rosas O, Sztyler M et al (2014) Corrosion of low carbon steel by microorganisms from the ‘pigging’ operation debris in water injection pipelines. Bioelectrochemistry 97:97–109. https://doi.org/10.1016/j.bioelechem.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  8. Beech I, Gaylarde CC (1999) Recent advances in the study of biocorrosion: an overview. Rev Microbiol 30:117–190. https://doi.org/10.1590/S0001-37141999000300001

    Article  Google Scholar 

  9. Lee W, Lewandowski Z, Nielsen PH et al (1995) Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8(3):165–194. https://doi.org/10.1080/08927019509378271

    Article  CAS  Google Scholar 

  10. Little BJ, Ray RI, Pope RK (2000) Relationship between corrosion and the biological sulfur cycle: a review. Corrosion 56(4):433–443. https://doi.org/10.5006/1.3280548

    Article  CAS  Google Scholar 

  11. Jia R, Yang D, Xu J et al (2017) Microbiologically influenced corrosion of c1018 carbon steel by nitrate reducing pseudomonas aeruginosa biofilm under organic carbon starvation. Corros Sci 127:1–9. https://doi.org/10.1016/j.corsci.2017.08.007

    Article  CAS  Google Scholar 

  12. Chamritski IG, Burns GR, Webster BJ et al (2004) Effect of iron-oxidizing bacteria on pitting of stainless steel. Corrosion 60(7):658–669. https://doi.org/10.5006/1.3287842

    Article  CAS  Google Scholar 

  13. Pitonzo BJ, Castro P, Amy PS et al (2004) Microbiologically influenced corrosion capability of bacteria isolated from Yucca Mountain. Corrosion 60(1):64–74. https://doi.org/10.5006/1.3299233

    Article  CAS  Google Scholar 

  14. Castro P, Amy P, Jones D, et al (2004) Effect of rock surfaces on the corrosion capability of Yucca Mountain bacteria. Corrosion. https://doi.org/10.5006/1.3299234

  15. Starosvetsky J, Armon R, Starosvetsky D et al (1999) Fouling of carbon steel heat exchanger caused by iron bacteria. Mater Perform 38:1

  16. Lee JS, Little BJ (2018) A mechanistic approach to understanding microbiologically influenced corrosion by metal-depositing bacteria. Corrosion 75(1):6–11. https://doi.org/10.5006/2899

    Article  CAS  Google Scholar 

  17. Xu D, Li Y, Gu T (2016) Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry 110:52–58. https://doi.org/10.1016/j.bioelechem.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  18. Okabe S, Odagiri M, Ito T et al (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73(3):971–980. https://doi.org/10.1128/aem.02054-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li S, Kim Y, Jeon K, et al (2001) Microbiologically influenced corrosion of carbon steel exposed to anaerobic soil. Corrosion. https://doi.org/10.5006/1.3280616

  20. Wu T, Xu J, Sun C et al (2014) Microbiological corrosion of pipeline steel under yield stress in soil environment. Corros Sci 88:291–305. https://doi.org/10.1016/j.corsci.2014.07.046

    Article  CAS  Google Scholar 

  21. Beech I (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186. https://doi.org/10.1016/j.copbio.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  22. Duan J, Wu S, Zhang X et al (2008) Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochim Acta 54(1):22–28. https://doi.org/10.1016/j.electacta.2008.04.085

    Article  CAS  Google Scholar 

  23. Sheng X, Ting YP, Pehkonen SO (2007) The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316. Corros Sci 49(5):2159–2176. https://doi.org/10.1016/j.corsci.2006.10.040

    Article  CAS  Google Scholar 

  24. Chan KY, Xu LC, Fang HHP (2002) Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria. Environ Sci Technol 36(8):1720–1727. https://doi.org/10.1021/es011187c

    Article  CAS  PubMed  Google Scholar 

  25. Lewandowski Z (1993) Dissolved oxygen gradients near microbially colonized surfaces. In: Geesey GG, Lewandowski X, Flemming H-C (eds) Biofouling and biocorrosion in industrial water systems. Lewis Publishers, Boca Raton, pp 175–188

  26. Borenstein SW (1994) Microbiologically influenced corrosion handbook. Woodhead publishing series in metals and surface engineering. Woodhead Publishing, Cambridge. https://doi.org/10.1533/9781845698621.frontmatter

  27. Li Y, Xu D, Chen C et al (2018) Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. J Mater Sci Technol 34(10):1713–1718. https://doi.org/10.1016/j.jmst.2018.02.023

    Article  CAS  Google Scholar 

  28. Yuan S, Pehkonen S, Ting YP et al (2009) Antibacterial inorganic–organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention. Langmuir 26:6728–36. https://doi.org/10.1021/la904083r

    Article  CAS  Google Scholar 

  29. Hou B, Li X, Ma X, et al (2017) The cost of corrosion in China. npj Mater Degrad 1(1):4. https://doi.org/10.1038/s41529-017-0005-2

  30. Li X, Zhang D, Liu Z et al (2015) Materials science: share corrosion data. Nature 527(7579):441–442. https://doi.org/10.1038/527441a

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Y, Zhou E, Liu Y et al (2017) Comparison of different electrochemical techniques for continuous monitoring of the microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. Corros Sci 126:142–151. https://doi.org/10.1016/j.corsci.2017.06.024

    Article  CAS  Google Scholar 

  32. Xu D, Gu T (2014) Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int Biodeter Biodegrad 91:74–81. https://doi.org/10.1016/j.ibiod.2014.03.014

    Article  CAS  Google Scholar 

  33. Jack R, Ringelberg D, White D (1992) Differential corrosion rates of carbon steel by combinations of Bacillus sp., Hafnia alvei and Desulfovibrio gigas established by phospholipid analysis of electrode biofilm. Corros Sci 33(12):1843–1853. https://doi.org/10.1016/0010-938X(92)90188-9

    Article  CAS  Google Scholar 

  34. Moradi M, Song Z, Yang L et al (2014) Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel. Corros Sci 84:103–112. https://doi.org/10.1016/j.corsci.2014.03.018

    Article  CAS  Google Scholar 

  35. Rajasekar A, Babu TG, Pandian STK et al (2007) Role of Serratia marcescens ACE2 on diesel degradation and its influence on corrosion. J Ind Microbiol Biotechnol 34(9):589–598. https://doi.org/10.1007/s10295-007-0225-5

    Article  CAS  PubMed  Google Scholar 

  36. Rajasekar A, Maruthamuthu S, Ting YP (2008) Electrochemical behavior of Serratia marcescens ACE2 on carbon steel API 5L–X60 in organic/aqueous phase. Ind Eng Chem Res 47(18):6925–6932. https://doi.org/10.1021/ie8005935

    Article  CAS  Google Scholar 

  37. Pusparizkita Y, Setiadi T, Harimawan A (2018) Effect of biodiesel concentration on corrosion of carbon steel by Serratia marcescens. MATEC Web Conf 156:01008. https://doi.org/10.1051/matecconf/201815601008

    Article  CAS  Google Scholar 

  38. Rajasekar A, Ting YP (2010) Microbial corrosion of aluminum 2024 aeronautical alloy by hydrocarbon degrading Bacillus cereus cereus ACE4 and Serratia marcescens ACE2. Ind Eng Chem Res 49(13):6054–6061. https://doi.org/10.1021/ie100078u

    Article  CAS  Google Scholar 

  39. Rice SA, Koh KS, Queck SY et al (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 187(10):3477–3485. https://doi.org/10.1128/jb.187.10.3477-3485.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ismail M, Yahaya N, Bakar A et al (2014) Cultivation of sulphate reducing bacteria in different media. Malays J Civ Eng 26:456–465

    Google Scholar 

  41. Bartholomew J, Mittwer T (1952) The Gram stain. Bacteriol Rev 16(1):1–29. https://doi.org/10.1128/br.16.1.1-29.1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu H, Frank Cheng Y (2017) Mechanism of microbiologically influenced corrosion of X52 pipeline steel in a wet soil containing sulfate-reduced bacteria. Electrochim Acta 253:368–378. https://doi.org/10.1016/j.electacta.2017.09.089

    Article  CAS  Google Scholar 

  43. Harimawan A, Devianto H, Kurniawan I et al (2017) Influence of initial pH solution on biofilm formation and corrosion of carbon steel by Serratia marcescens. Reaktor 17:89. https://doi.org/10.14710/reaktor.17.2.89-95

    Article  Google Scholar 

  44. Labbate M, Queck SY, Koh KS et al (2004) Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 186(3):692–698. https://doi.org/10.1128/jb.186.3.692-698.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to PES University for the financial support extended towards carrying out this research. They thank the Department of Biotechnology, PES University, for allowing the use of their labs and faculty for providing consultation on gene sequencing.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

L.P.—Conceptualization, design of experiments and analysis of results- electrochemistry, writing, review and editing paper. L. A.N.—Conducting experiments, preparing graphs and tables, rough draft writing and editing paper. A.D.B.—design of experiments and analysis of results—biotechnology, review and editing paper. All authors have reviewed the manuscript.

Corresponding author

Correspondence to Lata Pasupulety.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmi, A.N., Bhuyan, A.D. & Pasupulety, L. Effect of Corrosion Media on Biofilm Detachment and the Corrosion Mechanism of Serratia marcescens on Carbon Steel in River Water. J Bio Tribo Corros 10, 67 (2024). https://doi.org/10.1007/s40735-024-00870-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-024-00870-0

Keywords

Navigation