Log in

Plasma Electrolytic Oxidation (PEO) Coated CP-Ti: Wear Performance on Reciprocating Mode and Chondrogenic–Osteogenic Differentiation

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Biocompatible oxide coatings obtained by plasma electrolyte oxidation (PEO) have been used to improve the surface properties of bone grafts made of titanium. However, few studies explore the occurrence of wear in reciprocating mode. The chondrogenic differentiation over coatings obtained by PEO has not been explored either. These coatings tend to induce the osseointegration by contributing to the osteogenic differentiation behaviour, however, there is no evidence of their influence on the formation of cartilaginous matrix. Thus, this work aimed to investigate the behaviour of cell viability and differentiation (osteogenic and chondrogenic) and the tribological properties of coatings obtained by PEO at different voltages on the CP-Ti substrate for future applications in tissue engineering field. The morphology and structure of the coatings were characterised by scanning electron microscopy, profilometry and X-ray diffraction, respectively. The chemical composition of the coatings was analysed by energy dispersive spectroscopy and Rutherford Backscattering Spectrometry. Wear resistance was evaluated in a tribometer, in ball-on-plate configuration and in reciprocating mode. The biological behaviour was characterised by cell viability, adhesion and differentiation of mesenchymal stem cells assays. The results showed that the formation of the rutile phase in Ti-PEO250V and Ti-PEO300V coatings influenced the superior wear resistance behaviour, in relation to Ti-PEO200V. Furthermore, it was found that the increase in the applied voltage caused an increase in the incorporation of Ca and P elements in the coatings. Besides this, biological results indicated that all obtained coatings were not cytotoxic, allowing adhesion and consequently cell differentiation in osteogenic and chondrogenic lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fazel M, Shamanian M, Salimijazi HR (2020) Enhanced corrosion and tribocorrosion behavior of Ti6Al4V alloy by auto–sealed micro-arc oxidation layers. Biotribology 23:100131. https://doi.org/10.1016/j.biotri.2020.100131

    Article  Google Scholar 

  2. Santos PB, Baldin EK, Krieger DA et al (2021) Wear performance and osteogenic differentiation behavior of plasma electrolytic oxidation coatings on Ti–6Al–4V alloys: potential application for bone tissue repairs. Surf Coat Technol 417:127179. https://doi.org/10.1016/j.surfcoat.2021.127179

    Article  CAS  Google Scholar 

  3. Parfenov EV, Parfenova LV, Dyakonov GS et al (2019) Surface functionalization via PEO coating and RGD peptide for nanostructured titanium implants and their in vitro assessment. Surf Coat Technol 357:669–683. https://doi.org/10.1016/j.surfcoat.2018.10.068

    Article  CAS  Google Scholar 

  4. Aliasghari S, Skeldon P, Thompson GE (2014) Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings. Appl Surf Sci 316:463–476. https://doi.org/10.1016/j.apsusc.2014.08.037

    Article  CAS  Google Scholar 

  5. Malinovschi V, Marin A, Andrei V et al (2019) Obtaining and characterization of PEO layers prepared on CP-Ti in sodium dihydrogen phosphate dihydrate acidic electrolyte solution. Surf Coat Technol 375:621–636. https://doi.org/10.1016/j.surfcoat.2019.07.034

    Article  CAS  Google Scholar 

  6. Ao N, Liu D, Zhang X, He G (2020) Microstructural characteristics of PEO coating: effect of surface nanocrystallization. J Alloy Compd 823:153823. https://doi.org/10.1016/j.jallcom.2020.153823

    Article  CAS  Google Scholar 

  7. Hussein RO, Nie X, Northwood DO et al (2010) Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. J Phys D: Appl Phys 43:105203. https://doi.org/10.1088/0022-3727/43/10/105203

    Article  CAS  Google Scholar 

  8. May Zin WW, Buttachon S, Dethoup T et al (2017) Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006. Phytochemistry 141:86–97. https://doi.org/10.1016/j.phytochem.2017.05.015

    Article  CAS  Google Scholar 

  9. Liu Y, Zhu D, Gilbert JL (2021) Sub-nano to nanometer wear and tribocorrosion of titanium oxide-metal surfaces by in situ atomic force microscopy. Acta Biomater 126:477–484. https://doi.org/10.1016/j.actbio.2021.03.049

    Article  CAS  Google Scholar 

  10. De Poi RP, Kowolik M, Oshida Y, El Kholy K (2021) The oxidative response of human monocytes to surface modified commercially pure titanium. Front Immunol 12:2007. https://doi.org/10.3389/fimmu.2021.618002

    Article  CAS  Google Scholar 

  11. Pehlivan E, Roudnicka M, Dzugan J et al (2020) Effects of build orientation and sample geometry on the mechanical response of miniature CP-Ti Grade 2 strut samples manufactured by laser powder bed fusion. Addit Manuf 35:101403. https://doi.org/10.1016/j.addma.2020.101403

    Article  CAS  Google Scholar 

  12. Parfenova LV, Lukina ES, Galimshina ZR et al (2020) Biocompatible organic coatings based on bisphosphonic acid RGD-derivatives for PEO-modified titanium implants. Molecules 25:229. https://doi.org/10.3390/molecules25010229

    Article  CAS  Google Scholar 

  13. Santos-Coquillat A, Martínez-Campos E, Mohedano M et al (2018) In vitro and in vivo evaluation of PEO-modified titanium for bone implant applications. Surf Coat Technol 347:358–368. https://doi.org/10.1016/j.surfcoat.2018.04.051

    Article  CAS  Google Scholar 

  14. Whiteside P, Matykina E, Gough JE et al (2010) In vitro evaluation of cell proliferation and collagen synthesis on titanium following plasma electrolytic oxidation. J Biomed Mater Res Part A 94A:38–46. https://doi.org/10.1002/jbm.a.32664

    Article  CAS  Google Scholar 

  15. Echeverry-Rendón M, Galvis O, Aguirre R et al (2017) Modification of titanium alloys surface properties by plasma electrolytic oxidation (PEO) and influence on biological response. J Mater Sci Mater Med 28:169. https://doi.org/10.1007/s10856-017-5972-x

    Article  CAS  Google Scholar 

  16. Ahounbar E, Mousavi Khoei SM, Omidvar H (2019) Characteristics of in-situ synthesized Hydroxyapatite on TiO2 ceramic via plasma electrolytic oxidation. Ceram Int 45:3118–3125. https://doi.org/10.1016/j.ceramint.2018.10.206

    Article  CAS  Google Scholar 

  17. Mortazavi G, Jiang J, Meletis EI (2019) Investigation of the plasma electrolytic oxidation mechanism of titanium. Appl Surf Sci 488:370–382. https://doi.org/10.1016/j.apsusc.2019.05.250

    Article  CAS  Google Scholar 

  18. Becerikli M, Kopp A, Kröger N et al (2021) A novel titanium implant surface modification by plasma electrolytic oxidation (PEO) preventing tendon adhesion. Mater Sci Eng C 123:112030. https://doi.org/10.1016/j.msec.2021.112030

    Article  CAS  Google Scholar 

  19. Costa AI, Sousa L, Alves AC, Toptan F (2020) Tribocorrosion behaviour of bio-functionalized porous Ti surfaces obtained by two-step anodic treatment. Corros Sci. https://doi.org/10.1016/j.corsci.2020.108467

    Article  Google Scholar 

  20. Fazel M, Salimijazi HR, Golozar MA, Garsivaz jazi MR (2015) A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process. Appl Surf Sci 324:751–756. https://doi.org/10.1016/j.apsusc.2014.11.030

    Article  CAS  Google Scholar 

  21. Bernardi L, Luisi SB, Fernandes R et al (2011) The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. J Endod 37:973–979. https://doi.org/10.1016/j.joen.2011.04.010

    Article  Google Scholar 

  22. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  Google Scholar 

  23. Dos Santos FP, Peruch T, Katami SJV et al (2019) Poly (lactide-co-glycolide) (PLGA) scaffold induces short-term nerve regeneration and functional recovery following sciatic nerve transection in rats. Neuroscience 396:94–107. https://doi.org/10.1016/j.neuroscience.2018.11.007

    Article  CAS  Google Scholar 

  24. Maurmann N, Pereira DP, Burguez D et al (2017) Mesenchymal stem cells cultivated on scaffolds formed by 3D printed PCL matrices, coated with PLGA electrospun nanofibers for use in tissue engineering. Biomed Phys Eng Express 3:045005. https://doi.org/10.1088/2057-1976/aa6308

    Article  Google Scholar 

  25. Siqueira RL, Maurmann N, Burguêz D et al (2017) Bioactive gel–glasses with distinctly different compositions: bioactivity, viability of stem cells and antibiofilm effect against Streptococcus mutans. Mater Sci Eng, C 76:233–241. https://doi.org/10.1016/j.msec.2017.03.056

    Article  CAS  Google Scholar 

  26. Yerokhin AL, Nie X, Leyland A et al (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122:73–93. https://doi.org/10.1016/S0257-8972(99)00441-7

    Article  CAS  Google Scholar 

  27. de Souza GB, de Lima GG, Kuromoto NK et al (2011) Tribo-mechanical characterization of rough, porous and bioactive Ti anodic layers. J Mech Behav Biomed Mater 4:796–806. https://doi.org/10.1016/j.jmbbm.2010.09.012

    Article  CAS  Google Scholar 

  28. **a Q, Wang J, Liu G et al (2016) Effects of electric parameters on structure and thermal control property of PEO ceramic coatings on Ti alloys. Surf Coat Technol 307:1284–1290. https://doi.org/10.1016/j.surfcoat.2016.07.073

    Article  CAS  Google Scholar 

  29. Hussein RO, Nie X, Northwood DO (2013) An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochim Acta 112:111–119. https://doi.org/10.1016/j.electacta.2013.08.137

    Article  CAS  Google Scholar 

  30. Fei C, Hai Z, Chen C, Yangjian X (2009) Study on the tribological performance of ceramic coatings on titanium alloy surfaces obtained through microarc oxidation. Prog Org Coat 64:264–267. https://doi.org/10.1016/j.porgcoat.2008.08.034

    Article  CAS  Google Scholar 

  31. Kyrylenko S, Warchoł F, Oleshko O et al (2021) Effects of the sources of calcium and phosphorus on the structural and functional properties of ceramic coatings on titanium dental implants produced by plasma electrolytic oxidation. Mater Sci Eng, C 119:111607. https://doi.org/10.1016/j.msec.2020.111607

    Article  CAS  Google Scholar 

  32. Rafieerad AR, Ashra MR, Mahmoodian R, Bushroa AR (2015) Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: a review paper. Mater Sci Eng C 57:397–413. https://doi.org/10.1016/j.msec.2015.07.058

    Article  CAS  Google Scholar 

  33. Fazel M, Salimijazi HR, Shamanian M et al (2019) Influence of hydrothermal treatment on the surface characteristics and electrochemical behavior of Ti–6Al–4V bio-functionalized through plasma electrolytic oxidation. Surf Coat Technol 374:222–231. https://doi.org/10.1016/j.surfcoat.2019.05.088

    Article  CAS  Google Scholar 

  34. Faghihi-Sani M-A, Arbabi A, Mehdinezhad-Roshan A (2013) Crystallization of hydroxyapatite during hydrothermal treatment on amorphous calcium phosphate layer coated by PEO technique. Ceram Int 39:1793–1798. https://doi.org/10.1016/j.ceramint.2012.08.026

    Article  CAS  Google Scholar 

  35. Fattah-Alhosseini A, Keshavarz MK, Molaei M, Gashti SO (2018) Plasma electrolytic oxidation (PEO) process on commercially pure Ti surface: effects of electrolyte on the microstructure and corrosion behavior of coatings. Metall and Mat Trans A 49:4966–4979. https://doi.org/10.1007/s11661-018-4824-8

    Article  CAS  Google Scholar 

  36. Park M-G, Choe H-C (2019) Corrosion behaviors of bioactive element coatings on PEO-treated Ti–6Al–4V alloys. Surf Coat Technol 376:44–51. https://doi.org/10.1016/j.surfcoat.2018.07.093

    Article  CAS  Google Scholar 

  37. Roknian M, Fattah-alhosseini A, Gashti SO (2018) Plasma electrolytic oxidation coatings on pure Ti substrate: effects of Na3PO4 concentration on morphology and corrosion behavior of coatings in ringer’s physiological solution. J of Materi Eng and Perform 27:1343–1351. https://doi.org/10.1007/s11665-018-3236-7

    Article  CAS  Google Scholar 

  38. Kazek-Kęsik A, Dercz G, Suchanek K et al (2015) Biofunctionalization of Ti–13Nb–13Zr alloy surface by plasma electrolytic oxidation. Part I. Surf Coat Technol 276:59–69. https://doi.org/10.1016/j.surfcoat.2015.06.034

    Article  CAS  Google Scholar 

  39. Durdu S, Usta M (2014) The tribological properties of bioceramic coatings produced on Ti6Al4V alloy by plasma electrolytic oxidation. Ceram Int 40:3627–3635. https://doi.org/10.1016/j.ceramint.2013.09.062

    Article  CAS  Google Scholar 

  40. Zywitzki O, Modes T, Sahm H et al (2004) Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering. Surf Coat Technol 180–181:538–543. https://doi.org/10.1016/j.surfcoat.2003.10.115

    Article  CAS  Google Scholar 

  41. Modes T, Scheffel B, Chr M et al (2005) Structure and properties of titanium oxide layers deposited by reactive plasma activated electron beam evaporation. Surf Coat Technol 200:306–309. https://doi.org/10.1016/j.surfcoat.2005.02.080

    Article  CAS  Google Scholar 

  42. de Viteri VS, Bayón R, Igartua A et al (2016) Structure, tribocorrosion and biocide characterization of Ca, P and I containing TiO2 coatings developed by plasma electrolytic oxidation. Appl Surf Sci 367:1–10. https://doi.org/10.1016/j.apsusc.2016.01.145

    Article  CAS  Google Scholar 

  43. Zhao Z, Chen X, Chen A et al (2009) Synthesis of bioactive ceramic on the titanium substrate by micro-arc oxidation. J Biomed Mater Res A 90:438–445. https://doi.org/10.1002/jbm.a.31902

    Article  CAS  Google Scholar 

  44. Yu S, Yu Z, Wang G et al (2011) Biocompatibility and osteoconduction of active porous calcium–phosphate films on a novel Ti–3Zr–2Sn–3Mo–25Nb biomedical alloy. Colloids Surf, B 85:103–115. https://doi.org/10.1016/j.colsurfb.2011.02.025

    Article  CAS  Google Scholar 

  45. dos Santos A, Araujo JR, Landi SM et al (2014) A study of the physical, chemical and biological properties of TiO2 coatings produced by micro-arc oxidation in a Ca–P-based electrolyte. J Mater Sci Mater Med 25:1769–1780. https://doi.org/10.1007/s10856-014-5207-3

    Article  CAS  Google Scholar 

  46. Santos-Coquillat A, Mohedano M, Martinez-Campos E et al (2019) Bioactive multi-elemental PEO-coatings on titanium for dental implant applications. Mater Sci Eng C 97:738–752. https://doi.org/10.1016/j.msec.2018.12.097

    Article  CAS  Google Scholar 

  47. Han J, Cheng Y, Tu W et al (2018) The black and white coatings on Ti–6Al–4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte. Appl Surf Sci 428:684–697. https://doi.org/10.1016/j.apsusc.2017.09.109

    Article  CAS  Google Scholar 

  48. Martini C, Ceschini L, Tarterini F et al (2010) PEO layers obtained from mixed aluminate–phosphate baths on Ti–6Al–4V: dry sliding behaviour and influence of a PTFE topcoat. Wear 269:747–756. https://doi.org/10.1016/j.wear.2010.07.011

    Article  CAS  Google Scholar 

  49. Yerokhin AL, Nie X, Leyland A, Matthews A (2000) Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surf Coat Technol 130:195–206. https://doi.org/10.1016/S0257-8972(00)00719-2

    Article  CAS  Google Scholar 

  50. Ningshen S, Sakairi M, Suzuki K, Okuno T (2015) Corrosion performance and surface analysis of Ti–Ni–Pd–Ru–Cr alloy in nitric acid solution. Corros Sci 91:120–128. https://doi.org/10.1016/j.corsci.2014.11.010

    Article  CAS  Google Scholar 

  51. Câmara Noronha L, Velho de Castro V, Ludwig GA et al (2020) Ti–Cp: eletrochemical behaviour under slurry erosion wear. J Bio Tribo Corros 7:8. https://doi.org/10.1007/s40735-020-00442-y

    Article  Google Scholar 

  52. Doni Z, Alves AC, Toptan F et al (2013) Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys. Mater Des 1980–2015(52):47–57. https://doi.org/10.1016/j.matdes.2013.05.032

    Article  CAS  Google Scholar 

  53. Budinski KG (1991) Tribological properties of titanium alloys. Wear 151:203–217. https://doi.org/10.1016/0043-1648(91)90249-T

    Article  CAS  Google Scholar 

  54. Alves SA, Bayón R, de Viteri VS et al (2015) Tribocorrosion behavior of calcium- and phosphorous-enriched titanium oxide films and study of osteoblast interactions for dental implants. J Bio Tribo Corros 1:23. https://doi.org/10.1007/s40735-015-0023-y

    Article  Google Scholar 

  55. Çaha I, Alves AC, Affonço LJ et al (2019) Corrosion and tribocorrosion behaviour of titanium nitride thin films grown on titanium under different deposition times. Surf Coat Technol 374:878–888. https://doi.org/10.1016/j.surfcoat.2019.06.073

    Article  CAS  Google Scholar 

  56. Sankara Narayanan TSN, Kim J, Park HW (2020) High performance corrosion and wear resistant Ti–6Al–4V alloy by the hybrid treatment method. Appl Surf Sci 504:144388. https://doi.org/10.1016/j.apsusc.2019.144388

    Article  CAS  Google Scholar 

  57. Mohedano M, Guzman R, Arrabal R et al (2013) Bioactive plasma electrolytic oxidation coatings—the role of the composition, microstructure, and electrochemical stability: bioactive plasma electrolytic oxidation coatings. J Biomed Mater Res 101:1524–1537. https://doi.org/10.1002/jbm.b.32974

    Article  CAS  Google Scholar 

  58. Santos-Coquillat A, Gonzalez Tenorio R, Mohedano M et al (2018) Tailoring of antibacterial and osteogenic properties of Ti6Al4V by plasma electrolytic oxidation. Appl Surf Sci 454:157–172. https://doi.org/10.1016/j.apsusc.2018.04.267

    Article  CAS  Google Scholar 

  59. Echeverry-Rendón M, Galvis O, Quintero Giraldo D et al (2015) Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces. J Mater Sci: Mater Med 26:72. https://doi.org/10.1007/s10856-015-5408-4

    Article  CAS  Google Scholar 

  60. Harvey AG, Hill EW, Bayat A (2013) Designing implant surface topography for improved biocompatibility. Expert Rev Med Devices 10:257–267. https://doi.org/10.1586/erd.12.82

    Article  CAS  Google Scholar 

  61. Kulkarni M, Patil-Sen Y, Junkar I et al (2015) Wettability studies of topologically distinct titanium surfaces. Colloids Surf B 129:47–53. https://doi.org/10.1016/j.colsurfb.2015.03.024

    Article  CAS  Google Scholar 

  62. Kaitainen S, Mähönen AJ, Lappalainen R et al (2013) TiO2 coating promotes human mesenchymal stem cell proliferation without the loss of their capacity for chondrogenic differentiation. Biofabrication 5:025009. https://doi.org/10.1088/1758-5082/5/2/025009

    Article  CAS  Google Scholar 

  63. Lohberger B, Eck N, Glaenzer D et al (2021) Surface modifications of titanium aluminium vanadium improve biocompatibility and osteogenic differentiation potential. Materials 14:1574. https://doi.org/10.3390/ma14061574

    Article  CAS  Google Scholar 

  64. Plekhova NG, Lyapun IN, Drobot EI et al (2020) Functional state of mesenchymal stem cells upon exposure to bioactive coatings on titanium alloys. Bull Exp Biol Med 169:147–156. https://doi.org/10.1007/s10517-020-04841-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.F. Malfatti acknowledges CNPq (Grant 307723/2018-6), E.K. Baldin acknowledges CNPq (Gran 155466/2018-6), V.V Castro acknowledges CNPq (166262/2018-8) and P.B. Santos acknowledges CAPES (88887.372291/2019-00).

Funding

The present work was developed with the support of the Brazilian government through the National Council for Scientific and Technological Development (CNPq) (408366/2018-4). The authors acknowledge CAPES-PROEX—23038.000341/2019-71 and Research Support Foundation of the State of RS (FAPERGS) (19/2551-0000699-3 and 19/2551-0002280-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Bell Santos.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldin, E.K., Santos, P.B., de Castro, V.V. et al. Plasma Electrolytic Oxidation (PEO) Coated CP-Ti: Wear Performance on Reciprocating Mode and Chondrogenic–Osteogenic Differentiation. J Bio Tribo Corros 8, 29 (2022). https://doi.org/10.1007/s40735-021-00627-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00627-z

Keywords

Navigation