Log in

Microbial-Based Treatment of Kitchen Waste and Kitchen Wastewater: State-of-the-Art Progress and Emerging Research Prospects Related to Microalgae and Bacteria

  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review intends to recapitulate the pretreatment measures of kitchen waste and kitchen wastewater (KWAKWW). Furthermore, this review also separately summarizes the ascendancy of using bacteria, microalgae and microalgae-bacteria consortia to treat KWAKWW, and corresponding emerging reinforcement strategies.

Recent Findings

Tremendous amount of KWAKWW are annually generated in the whole world. Wherein roughly 1.3 billion tons of kitchen waste (KW) are dumped and which were forecasted that would increase to about 2.5 billion tons by 2025. In addition, KWAKWW have the characteristics of high content of refractory organic matter (e.g., oil and cellulose), water (commonly outstrip 70%), and salt, which is difficult for bacteria or microalgae to treat. Consequently, it is essential to perform efficacious pretreatment measures to boost the efficiency of post-treatment. Utilizing bacteria, microalgae, and microalgae-bacteria consortia to treat KWAKWW is considered an efficient strategy due to ascendancy of puissant deep purification ability, excellent resource appreciation effect, and low operation costs. For instance, bacteria could produce leastways four kinds of products through KWAKWW; multiple studies indicated that microalgae generally could remove exceed 70% of nutrients of KWAKWW; one research manifested that microalgae-bacteria consortia retrenched 46% of the demand about dissolved oxygen (DO). Nevertheless, the above microbial treatment systems still have some inherent drawbacks such as poor impact resistance. Fortunately, metabolic engineering and other strengthen strategies can efficaciously upgrade the nutrient removal and resource utilization performance of bacteria, microalgae, and microalgae-bacteria consortia. For example, one research shown that the 1-butanol productivity of original bacteria remarkably increased by 93.48–171.74% draw support from metabolic engineering.

Summary

A total of 221 papers related to the content of this review were searched through Web of Science (http://apps.webofknowledge.com). What is more, specific data that emerged on this review were all extracted from the above-searched papers. The mechanisms and effect of hydrothermal carbonization (HTC) and other four pretreatment measures are introduced by this review in detail. The preponderance of utilizing bacteria, microalgae, and microalgae-bacteria consortia to treat KWAKWW are comprehensively evaluated mainly from the perspectives of nutrient purification and resource utilization. Four state-of-the-art strengthen strategies like machine learning are then introduced. Finally, the current challenges in KWAKWW treatment are summarized from five aspects, and future concrete improvement directions are also provided. Overall, this review outlines the state-of-the-art research progress of KWAKWW treatment by bacteria and microalgae and tenders corresponding implementation schemes for improving KWAKWW treatment effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Huang J, Pan Y, Liu L, Liang J, Wu L, Zhu H, Zhang P. High salinity slowed organic acid production from acidogenic fermentation of kitchen wastewater by sha** functional bacterial community. J Environ Manag. 2022;310:114765. https://doi.org/10.1016/j.jenvman.2022.114765.

    Article  CAS  Google Scholar 

  2. • Elgarahy AM, Eloffy MG, Alengebawy A, El-Sherif DM, Gaballah MS, Elwakeel KZ, El-Qelish M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: a systematic review. Environ Res. 2023;225:115558. https://doi.org/10.1016/j.envres.2023.115558. This review detailed and summarized the characteristics, composition, and pretreatment measures of KWAKWW and introduced different valuable products derived from KWAKWW.

    Article  CAS  Google Scholar 

  3. • Liu X, Shen J, Guo Y, Wang S, Chen B, Luo L, Zhang H. Technical progress and perspective on the thermochemical conversion of kitchen waste and relevant applications: a comprehensive review. Fuel. 2023;331:125803. https://doi.org/10.1016/j.fuel.2022.125803. This review explained the specific conversion pathways of principal components in KWAKWW during the HTC process.

    Article  CAS  Google Scholar 

  4. Nazia S, Jegatheesan V, Bhargava SK, Sundergopal S. Microbial fuel cell–aided processing of kitchen wastewater using high-performance nanocomposite membrane. J Environ Eng. 2020;8:146. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001717.

    Article  Google Scholar 

  5. • Ahmad I, Abdullah N, Koji I, Yuzir A, Mohamad SE, Show PL, Cheah WY, Kho KS. The role of restaurant wastewater for producing bioenergy towards a circular bioeconomy: a review on composition, environmental impacts, and sustainable integrated management. Environ Res. 2022;214:113854. https://doi.org/10.1016/j.envres.2022.113854. This review summarized the characteristics and disservices of KWW.

    Article  CAS  Google Scholar 

  6. Esteban-Lustres R, Torres MD, Piñeiro B, Enjamio C, Domínguez H. Intensification and biorefinery approaches for the valorisation of kitchen wastes – a review. Bioresour Technol. 2022;360:127652. https://doi.org/10.1016/j.biortech.2022.127652.

    Article  CAS  Google Scholar 

  7. Cai L, Guo H, Zheng G, Wang X, Wang K. Metagenomic analysis reveals the microbial degradation mechanism during kitchen waste biodrying. Chemosphere. 2022;307:135862. https://doi.org/10.1016/j.chemosphere.2022.135862.

    Article  CAS  Google Scholar 

  8. Guleria S, Singh H, Sharma V, Bhardwaj N, Arya SK, Puri S, Khatri M. Polyhydroxyalkanoates production from domestic waste feedstock: a sustainable approach towards bio-economy. J Clean Prod. 2022;340:130661. https://doi.org/10.1016/j.jclepro.2022.130661.

    Article  CAS  Google Scholar 

  9. Kumar Y, Kaur S, Kheto A, Munshi M, Sarkar A, Pandey HO, Tarafdar A, Sirohi R. Cultivation of microalgae on food waste: recent advances and way forward. Bioresour Technol. 2022;363:127834. https://doi.org/10.1016/j.biortech.2022.127834.

    Article  CAS  Google Scholar 

  10. •• Wang Z, Chu Y, Chang H, **e P, Zhang C, Li F, Ho S-H. Advanced insights on removal of antibiotics by microalgae-bacteria consortia: a state-of-the-art review and emerging prospects. Chemosphere. 2022;307(Part 4):136117. https://doi.org/10.1016/j.chemosphere.2022.136117. This review summarized interaction mechanisms between microalgae and bacteria and introduced some novel treatment systems based on microalgae-bacteria consortia.

    Article  CAS  Google Scholar 

  11. Oruganti RK, Katam K, Show PL, Gadhamshetty V, Upadhyayula VKK, Bhattacharyya D. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered. 2022;13(4):10412–53. https://doi.org/10.1080/21655979.2022.2056823.

    Article  CAS  Google Scholar 

  12. Palansooriya KN, Dissanayake PD, Igalavithana AD, Tang RG, Cai YJ, Chang SX. Converting food waste into soil amendments for improving soil sustainability and crop productivity: a review. Sci Total Environ. 2023;881:163311. https://doi.org/10.1016/j.scitotenv.2023.163311.

    Article  CAS  Google Scholar 

  13. **e T, Zhang Z, Zhang D, Wei C, Lin Y, Feng R, Nan J, Feng Y. Effect of hydrothermal pretreatment and compound microbial agents on compost maturity and gaseous emissions during aerobic composting of kitchen waste. Sci Total Environ. 2022;854:158712. https://doi.org/10.1016/j.scitotenv.2022.158712.

    Article  CAS  Google Scholar 

  14. • Chew KW, Chia SR, Show PL, Ling TC, Arya SS, Chang J-S. Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris. Bioresour Technol. 2018;267:356–62. https://doi.org/10.1016/j.biortech.2018.07.069This article explored the effect of dilution and composting these two KWAKWW pretreatment measures to the treatment ability of microalgae and, besides, explored the high-value addition substance accumulation performance of microalgae under different pretreatment conditions.

    Article  CAS  Google Scholar 

  15. Fernandes F, Silkina A, Fuentes-Grünewald C, Wood EE, Ndovela VLS, OatleyRadcliffe DL, Lovitt RW, Llewellyn CA. Valorising nutrient-rich digestate: dilution, settlement and membrane filtration processing for optimization as a waste-based media for microalgal cultivation. Waste Manag. 2020;118:197–208. https://doi.org/10.1016/J.WASMAN.2020.08.037.

    Article  CAS  Google Scholar 

  16. Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS ONE. 2012;7:e38975. https://doi.org/10.1371/journal.pone.0038975.

    Article  CAS  Google Scholar 

  17. Hafid HS, Shah UKM, Baharuddin AS, Ariff AB. Feasibility of using kitchen waste as future substrate for bioethanol production: a review. Renew Sustain Energy Rev. 2017;74:671–86. https://doi.org/10.1016/j.rser.2017.02.071.

    Article  CAS  Google Scholar 

  18. Li P, Zeng Y, **e Y, Li X, Kang Y, Wang Y, **e T, Zhang Y. Effect of pretreatment on the enzymatic hydrolysis of kitchen waste for xanthan production. Bioresour Technol. 2017;223:84–90. https://doi.org/10.1016/j.biortech.2016.10.035.

    Article  CAS  Google Scholar 

  19. Chavan S, Yadav B, Tyagi RD, Wong JWC, Drogui P. Trends and challenges in the valorization of kitchen waste to polyhydroxyalkanoates. Bioresour Technol. 2023;369:128323. https://doi.org/10.1016/j.biortech.2022.128323.

    Article  CAS  Google Scholar 

  20. Li L-H, Li Y-L, Hong Y. New insights into the microalgal culture using kitchen waste: enzyme pretreatment and mixed microalgae self-flocculation. Biochem Eng J. 2023;195:108904. https://doi.org/10.1016/j.bej.2023.108904.

    Article  CAS  Google Scholar 

  21. Gao X, Xu Z, Li Y, Zhang L, Li G, Nghiem LD, Luo W. Bacterial dynamics for gaseous emission and humification in bio-augmented composting of kitchen waste. Sci Total Environ. 2021;801:149640. https://doi.org/10.1016/j.scitotenv.2021.149640.

    Article  CAS  Google Scholar 

  22. Zhou Y, Engler N, Nelles M. Symbiotic relationship between hydrothermal carbonization technology and anaerobic digestion for food waste in China. Bioresour Technol. 2018;260:404–12. https://doi.org/10.1016/j.biortech.2018.03.102.

    Article  CAS  Google Scholar 

  23. Ferrentino R, Merzari F, Grigolini E, Fiori L, Andreottola G. Hydrothermal carbonization liquor as external carbon supplement to improve biological denitrification in wastewater treatment. J Water Process Eng. 2021;44:102360. https://doi.org/10.1016/j.jwpe.2021.102360.

    Article  Google Scholar 

  24. Hu Z, Shi X, Jiang H. Correlating the chemical properties and bioavailability of dissolved organic matter released from hydrochar of walnut shells. Chemosphere. 2021;275:130003. https://doi.org/10.1016/j.chemosphere.2021.130003.

    Article  CAS  Google Scholar 

  25. Tarhan SZ, Koçer AT, Özçimen D, Gökalp İ. Cultivation of green microalgae by recovering aqueous nutrients in hydrothermal carbonization process water of biomass wastes. J Water Proc Eng. 2021;40:101783. https://doi.org/10.1016/j.jwpe.2020.101783.

    Article  Google Scholar 

  26. Patel A, Mahboubi A, Horváth IS, Taherzadeh MJ, Rova U, Christakopoulos P, Matsakas L. Volatile fatty acids (VFAs) generated by anaerobic digestion serve as feedstock for freshwater and marine oleaginous microorganisms to produce biodiesel and added-value compounds. Front Microbiol. 2021;12:1–17. https://doi.org/10.3389/fmicb.2021.614612.

    Article  CAS  Google Scholar 

  27. Al-Mallahi J, Ishii K. Attempts to alleviate inhibitory factors of anaerobic digestate for enhanced microalgae cultivation and nutrients removal: a review. J Environ Manage. 2022;304:114266. https://doi.org/10.1016/j.jenvman.2021.114266.

    Article  CAS  Google Scholar 

  28. Wu KC, Yau YH. Sze ETP. Application of anaerobic bacterial ammonification pretreatment to microalgal food waste leachate cultivation and biofuel production. Mar Pollut Bull. 2020;153:111007. https://doi.org/10.1016/j.marpolbul.2020.111007.

  29. Chong CC, Cheng YW, Ishak S, Lam MK, Lim JW, Tan IS, et al. Anaerobic digestate as a low-cost nutrient source for sustainable microalgae cultivation: a way forward through waste valorization approach. Sci Total Environ. 2022;803:150070. https://doi.org/10.1016/j.scitotenv.2021.150070.

  30. Raj T, Chandrasekhar K, Morya R, Kumar Pandey A, Jung JH, Kumar D, Singhania RR, Kim SH. Critical challenges and technological breakthroughs in food waste hydrolysis and detoxification for fuels and chemicals production. Bioresour Technol. 2022;360:127512. https://doi.org/10.1016/j.biortech.2022.127512.

    Article  CAS  Google Scholar 

  31. Dhinam S, Mukherjee G. Present scenario and future scope of food waste to biofuel production. J Food Process Eng. 2021;44(2):13594. https://doi.org/10.1111/jfpe.13594.

    Article  Google Scholar 

  32. Melikoglu M. Reutilisation of food wastes for generating fuels and value added products: a global review. Environ Technol Innov. 2020;19:101040. https://doi.org/10.1016/j.eti.2020.101040.

    Article  Google Scholar 

  33. Wang C, Wu M, Peng C, Yan F, Jia Y, Li X, Li M, Wu B, Xu H, Qiu Z. Bacterial dynamics and functions driven by a novel microbial agent to promote kitchen waste composting and reduce environmental burden. J Clean Prod. 2022;337:130491. https://doi.org/10.1016/j.jclepro.2022.130491.

    Article  CAS  Google Scholar 

  34. Wang S, Xu C, Song L, Zhang J. Anaerobic digestion of food waste and its microbial consortia: a historical review and future perspectives. Int J Environ Res Public Health. 2022;19(15):9519. https://doi.org/10.3390/ijerph19159519.

    Article  CAS  Google Scholar 

  35. **n L, Qin Y, Lou T, Xu X, Wang H, Mei Q, Wu W. Rapid start-up and humification of kitchen waste composting by an innovative biodrying-enhanced process. Chem Eng J. 2023;452:139459. https://doi.org/10.1016/j.cej.2022.139459.

    Article  CAS  Google Scholar 

  36. Xu Z, Qi C, Zhang L, Ma Y, Li G, Nghiem LD, Luo W. Regulating bacterial dynamics by lime addition to enhance kitchen waste composting. Bioresour Technol. 2021;341:125749. https://doi.org/10.1016/j.biortech.2021.125749.

    Article  CAS  Google Scholar 

  37. Ajay CM, Mohan S, Dinesha P. Decentralized energy from portable biogas digesters using domestic kitchen waste: a review. Waste Manag. 2021;125:10–26. https://doi.org/10.1016/j.wasman.2021.02.031.

    Article  CAS  Google Scholar 

  38. Yan M, Liu Y, Song Y, Xu A, Zhu G, Jiang J. Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification. Energy. 2022;242:123054. https://doi.org/10.1016/j.energy.2021.123054.

    Article  CAS  Google Scholar 

  39. Deng H, Ren H, Fan J, Zhao K, Hu C, Qu J. Membrane fouling mitigation by coagulation and electrostatic repulsion using an electro-AnMBR in kitchen wastewater treatment. Water Res. 2022;222:118883. https://doi.org/10.1016/j.watres.2022.118883.

    Article  CAS  Google Scholar 

  40. Duan N, Khoshnevisan B, Lin C, Liu Z, Liu H. Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environ Int. 2020;137:105522. https://doi.org/10.1016/j.envint.2020.105522.

    Article  CAS  Google Scholar 

  41. ** C, Sun S, Yang D, Sheng W, Ma Y, He W, Li G. Anaerobic digestion: an alternative resource treatment option for food waste in China. Sci Total Environ. 2021;779:146397. https://doi.org/10.1016/j.scitotenv.2021.146397.

    Article  CAS  Google Scholar 

  42. Li Y, ** Y, Borrion A, Li H. Current status of food waste generation and management in China. Bioresour Technol. 2019;273:654–65. https://doi.org/10.1016/j.biortech.2018.10.083.

    Article  CAS  Google Scholar 

  43. Meng Q, Liu H, Zhang H, Xu S, Lichtfouse E, Yun Y. Anaerobic digestion and recycling of kitchen waste: a review. Environ Chem Lett. 2022;20(3):1745–62. https://doi.org/10.1007/s10311-022-01408-x.

    Article  CAS  Google Scholar 

  44. Narisetty V, Adlakha N, Kumar Singh N, Dalei SK, Prabhu AA, Nagarajan S, Naresh Kumar A, Amruthraj Nagoth J, Kumar G, Singh V, Kumar V. Integrated biorefineries for repurposing of food wastes into value-added products. Bioresour Technol. 2022;363:127856. https://doi.org/10.1016/j.biortech.2022.127856.

    Article  CAS  Google Scholar 

  45. Zhang X, Zhang D, Chu S, Khalid M, Wang R, Chi Y, Duan X, Yang X, Zhou P. Employing salt-tolerant bacteria Serratia marcescens subsp. SLS for biodegradation of oily kitchen waste. Chemosphere. 2023;329:138655. https://doi.org/10.1016/j.chemosphere.2023.138655.

    Article  CAS  Google Scholar 

  46. Ke X, Sun JC, Liu C, Ying JM, Zou SP, Xue YP, Zheng YG. Fed-in-situ biological reduction treatment of food waste via high-temperature-resistant oil degrading microbial consortium. Bioresour Technol. 2021;340:125635. https://doi.org/10.1016/j.biortech.2021.125635.

    Article  CAS  Google Scholar 

  47. Wang C, Li J, Fang W, Chen W, Zou M, Li X, Qiu Z, Xu H. Lipid degrading microbe consortium driving micro-ecological evolvement of activated sludge for cooking wastewater treatment. Sci Total Environ. 2022;804:150071. https://doi.org/10.1016/J.SCITOTENV.2021.150071.

    Article  CAS  Google Scholar 

  48. Taipabu MI, Viswanathan K, Wu W, Nagy ZK. Production of renewable fuels and chemicals from fats, oils, and grease (FOG) using homogeneous and heterogeneous catalysts: design, validation, and optimization. Chem Eng J. 2021;424:130199. https://doi.org/10.1016/j.cej.2021.130199.

    Article  CAS  Google Scholar 

  49. Ke X, Hua X, Sun JC, Zheng RC, Zheng YG. Synergetic degradation of waste oil by constructed bacterial consortium for rapid in-situ reduction of kitchen waste. J Biosci Bioeng. 2021;131(4):412–9. https://doi.org/10.1016/j.jbiosc.2020.12.005.

    Article  CAS  Google Scholar 

  50. Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee J-K, Kalia VC. Dark fermentative bioconversion of glycerol to hydrogen by bacillus thuringiensis. Bioresour Technol. 2015;182:383–8. https://doi.org/10.1016/j.biortech.2015.01.138.

    Article  CAS  Google Scholar 

  51. Metsoviti M, Zeng A-P, Koutinas AA, Papanikolaou S. Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J Biotechnol. 2013;163:408–18. https://doi.org/10.1016/j.jbiotec.2012.11.018.

    Article  CAS  Google Scholar 

  52. Ben Ayed H, Jemil N, Maalej H, Bayoudh A, Hmidet N, Nasri M. Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6. Int Biodeterior Biodegradation. 2015;99:8–14. https://doi.org/10.1016/j.ibiod.2014.12.009.

    Article  CAS  Google Scholar 

  53. Cao M-K, Guo H-T, Zheng G-D, Chen T-B, Cai L. Microbial succession and degradation during kitchen waste biodrying, highlighting the thermophilic phase. Bioresour Technol. 2021;326:124762. https://doi.org/10.1016/j.biortech.2021.124762.

    Article  CAS  Google Scholar 

  54. Pham VHT, Kim J, Shim J, Chang S, Chung W. Coconut mesocarp-based lignocellulosic waste as a substrate for cellulase production from high promising multienzyme-producing Bacillus amyloliquefaciens FW2 without pretreatments. Microorganisms. 2022;10:327. https://doi.org/10.3390/microorganisms10020327.

    Article  CAS  Google Scholar 

  55. Li F, Ghanizadeh H, Cui G, Liu J, Miao S, Liu C, Song W, Chen X, Cheng M, Wang P, Zhang Y, Wang A. Microbiome - based agents can optimize composting of agricultural wastes by modifying microbial communities. Bioresour Technol. 2023;374:128765. https://doi.org/10.1016/j.biortech.2023.128765.

    Article  CAS  Google Scholar 

  56. Parwin R, Paul KK. Overview of applications of kitchen wastewater and its treatment. J Hazard Toxic Radio Waste. 2020;24:04019041. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000482.

    Article  CAS  Google Scholar 

  57. Sindhu R, Manju A, Mohan P, Rajesh RO, Madhavan A, Arun KB, Hazeena SH, Mohandas A, Rajamani SP, Puthiyamadam A, Binod P, Reshmy R. Valorization of food and kitchen waste: an integrated strategy adopted for the production of poly-3-hydroxybutyrate, bioethanol, pectinase and 2, 3-butanediol. Bioresour Technol. 2020;310:123515. https://doi.org/10.1016/j.biortech.2020.123515.

    Article  CAS  Google Scholar 

  58. Hallenbeck PC, Abo-Hashesh M, Ghosh D. Strategies for improving biological hydrogen production. Bioresour Technol. 2012;110:1–9. https://doi.org/10.1016/j.biortech.2012.01.103.

    Article  CAS  Google Scholar 

  59. Mohanakrishna G, Sneha NP, Rafi SM, Sarkar O. Dark fermentative hydrogen production: potential of food waste as future energy needs. Sci Total Environ. 2023;888:163801. https://doi.org/10.1016/j.scitotenv.2023.163801.

    Article  CAS  Google Scholar 

  60. Slezak R, Grzelak J, Krzystek L, Ledakowicz S. The effect of initial organic load of the kitchen waste on the production of VFA and H2 in dark fermentation. Waste Manage. 2017;68:610–7. https://doi.org/10.1016/j.wasman.2017.06.024.

    Article  CAS  Google Scholar 

  61. Hai T, Mishra P, Zain JM, Saini K, Kumar NM, Ab WZ. Co-digestion of domestic kitchen food waste and palm oil mill effluent for biohydrogen production. Sustainable Energy Technol Assess. 2023;55:102965. https://doi.org/10.1016/j.seta.2022.102965.

    Article  Google Scholar 

  62. Hees T, Zhong F, Stürzel M, Mülhaupt R. Tailoring hydrocarbon polymers and all-hydrocarbon composites for circular economy. Macromol Rapid Commun. 2019;40(1):1800608. https://doi.org/10.1002/marc.201800608.

    Article  CAS  Google Scholar 

  63. Rawoof SAA, Kumar PS, Devaraj K, Devaraj T, Subramanian S. Enhancement of lactic acid production from food waste through simultaneous saccharification and fermentation using selective microbial strains. Biomass Convers Biorefinery. 2022;12:5947–58. https://doi.org/10.1007/s13399-020-00998-2.

    Article  CAS  Google Scholar 

  64. Swetha TA, Ananthi V, Bora A, Sengottuvelan N, Ponnuchamy K, Muthusamy G, Arun A. A review on biodegradable polylactic acid (PLA) production from fermentative food waste - its applications and degradation. Int J of Biol Macromol. 2023;234:123703. https://doi.org/10.1016/j.ijbiomac.2023.123703.

    Article  CAS  Google Scholar 

  65. Kumar G, Ponnusamy VK, Bhosale RR, Shobana S, Yoon JJ, Bhatia SK, Rajesh Banu J, Kim SH. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresour Technol. 2019;287:121427. https://doi.org/10.1016/j.biortech.2019.121427.

    Article  CAS  Google Scholar 

  66. Rao A, Haque S, El-Enshasy HA, Singh V, Mishra BN. RSM–GA based optimization of bacterial PHA production and in silico modulation of citrate synthase for enhancing PHA production. Biomolecules. 2019;9(12):872. https://doi.org/10.3390/biom9120872.

    Article  CAS  Google Scholar 

  67. Chhandama MVL, Chetia AC, Satyan KB, Ao S, Ruatpuia JV, Rokhum SL. Valorisation of food waste to sustainable energy and other value-added products: a review. Bioresour Technol Rep. 2022;17:100945. https://doi.org/10.1016/j.biteb.2022.100945.

    Article  Google Scholar 

  68. Panahi HKS, Dehhaghi M, Guillemin GJ, Lam SS, Aghbashlo M, Tabatabaei M. Bioethanol production from food wastes rich in carbohydrates. Curr Opin Food Sci. 2022;43:71–81. https://doi.org/10.1016/j.cofs.2021.11.001.

    Article  CAS  Google Scholar 

  69. Sarkar D, Gupta K, Poddar K, Biswas R, Sarkar A. Direct conversion of fruit waste to ethanol using marine bacterial strain Citrobacter sp. E4. Process Saf Environ Prot. 2019;128:203–10. https://doi.org/10.1016/j.psep.2019.05.051.

    Article  CAS  Google Scholar 

  70. Xue C, Zhao XQ, Liu CG, Chen LJ, Bai FW. Prospective and development of butanol as an advanced biofuel. Biotechnol Adv. 2013;31(8):1575–84. https://doi.org/10.1016/j.biotechadv.2013.08.004.

    Article  CAS  Google Scholar 

  71. Li J, Du Y, Bao T, Dong J, Lin M, Shim H, Yang S-T. n-Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricum Δack-adhE2 in a fibrous-bed bioreactor. Bioresour Technol. 2019;289:121749. https://doi.org/10.1016/j.biortech.2019.121749.

    Article  CAS  Google Scholar 

  72. Zhang J, Zong W, Hong W, Zhang ZT, Wang Y. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab Eng. 2018;47:49–59. https://doi.org/10.1016/j.biombioe.2018.05.012.

    Article  CAS  Google Scholar 

  73. Chen H, Shen H, Su H, Chen H, Tan F, Lin J. High-efficiency bioconversion of kitchen garbage to biobutanol using an enzymatic cocktail procedure. Bioresour Technol. 2017;245:1110–21. https://doi.org/10.1016/j.biortech.2017.09.056.

    Article  CAS  Google Scholar 

  74. Saady NMC. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrog Energy. 2013;38:13172–91. https://doi.org/10.1016/j.ijhydene.2013.07.122.

    Article  CAS  Google Scholar 

  75. Tawfik A, El-Qelish M, Salem A. Efficient anaerobic co-digestion of municipal food waste and kitchen wastewater for bio-hydrogen production. Int J Green Energy. 2015;12:1301–8. https://doi.org/10.1080/15435075.2014.909357.

    Article  CAS  Google Scholar 

  76. Merli G, Becci A, Amato A, Beolchini F. Acetic acid bioproduction: the technological innovation change. Sci Total Environ. 2021;798:149292. https://doi.org/10.1016/j.scitotenv.2021.149292.

    Article  CAS  Google Scholar 

  77. Upadhyay A, Kovalev AA, Zhuravleva EA, Pareek N, Vivekanand V. Enhanced production of acetic acid through bioprocess optimization employing response surface methodology and artificial neural network. Bioresour Technol. 2023;376:128930. https://doi.org/10.1016/j.biortech.2023.128930.

    Article  CAS  Google Scholar 

  78. Li Y, He D, Niu D, Zhao Y. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation. Bioprocess Biosyst Eng. 2015;38:863–9. https://doi.org/10.1007/s00449-014-1329-8.

    Article  CAS  Google Scholar 

  79. Wang J, Zeng A, Yuan W. Succinic acid fermentation from agricultural wastes: the producing microorganisms and their engineering strategies. Curr Opin Environ Sci Heal. 2022;25:100313. https://doi.org/10.1016/j.coesh.2021.100313.

    Article  Google Scholar 

  80. Ahn JH, Jang YS, Lee SY. Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol. 2016;42:54–66. https://doi.org/10.1016/j.copbio.2016.02.034.

    Article  CAS  Google Scholar 

  81. Kuglarz M, Angelidaki I. Succinic Production from source-separated kitchen biowaste in a biorefinery concept: focusing on alternative carbon dioxide source for fermentation processes. Fermentation. 2023;9:259. https://doi.org/10.3390/fermentation9030259.

    Article  CAS  Google Scholar 

  82. Babaei M, Tsapekos P, Alvarado-Morales M, Hosseini M, Ebrahimi S, Niaei A, Angelidaki I. Valorization of organic waste with simultaneous biogas upgrading for the production of succinic acid. Biochem Eng J. 2019;147:136–45. https://doi.org/10.1016/j.bej.2019.04.012.

    Article  CAS  Google Scholar 

  83. Chen Y, Zhang X, Chen Y. Propionic acid-rich fermentation (PARF) production from organic wastes: a review. Bioresour Technol. 2021;339:125569. https://doi.org/10.1016/j.biortech.2021.125569.

    Article  CAS  Google Scholar 

  84. Strazzera G, Battista F, Garcia NH, Frison N, Bolzonella D. Volatile fatty acids production from food wastes for biorefinery platforms: a review. J Environ Manage. 2018;226:278–88. https://doi.org/10.1016/j.jenvman.2018.08.039.

    Article  CAS  Google Scholar 

  85. Zheng Y, Wang P, Yang X, Zhao L, Ren L, Li J. Metagenomics insight into bioaugmentation mechanism of Propionibacterium acidipropionici during anaerobic acidification of kitchen waste. Bioresour Technol. 2022;362:127843. https://doi.org/10.1016/j.biortech.2022.127843.

    Article  CAS  Google Scholar 

  86. Kim D-H, Kim S-H, Jung K-W, Kim M-S, Shin H-S. Effect of initial pH independent of operational pH on hydrogen fermentation of food waste. Bioresour Technol. 2011;102(18):8646–52. https://doi.org/10.1016/j.biortech.2011.03.030.

    Article  CAS  Google Scholar 

  87. Zhang L, Li J, Ban Q, He J, Jha AK. Metabolic pathways of hydrogen production in fermentative acidogenic microflora. J Microbiol Biotechnol. 2012;22:668–73. https://doi.org/10.4014/jmb.1110.10076.

    Article  CAS  Google Scholar 

  88. Jung JH, Sim YB, Baik JH, Park JH, Kim SH. High-rate mesophilic hydrogen production from food waste using hybrid immobilized microbiome. Bioresour Technol. 2021;320:124279. https://doi.org/10.1016/j.biortech.2020.124279.

    Article  CAS  Google Scholar 

  89. Lee D-Y, Xu K-Q, Kobayashi T, Li Y-Y, Inamori Y. Effect of organic loading rate on continuous hydrogen production from food waste in submerged anaerobic membrane bioreactor. Int J Hydrog Energy. 2014;39:16863–71. https://doi.org/10.1016/j.ijhydene.2014.08.022.

    Article  CAS  Google Scholar 

  90. Kanchanasuta S, Prommeenate P, Boonapatcharone N, Pisutpaisal N. Stability of Clostridium butyricum in biohydrogen production from non-sterile food waste. Int J Hydrog Energy. 2017;42:3454–65. https://doi.org/10.1016/j.ijhydene.2016.09.111.

    Article  CAS  Google Scholar 

  91. Li Z, Chen Z, Ye H, Wang Y, Luo W, Chang J-S, Li Q, He N. Anaerobic codigestion of sewage sludge and food waste for hydrogen and VFA production with microbial community analysis. Waste Manag. 2018;78:789–99. https://doi.org/10.1016/j.wasman.2018.06.046.

    Article  CAS  Google Scholar 

  92. Mahato RK, Kumar D, Rajagopalan G. Biohydrogen production from fruit waste by Clostridium strain BOH3. Renew Energy. 2020;153:1368–77. https://doi.org/10.1016/j.renene.2020.02.092.

    Article  CAS  Google Scholar 

  93. Srivastava S, Kumar A, Pandey A, Pandey A. Intensification of hydrogen production by B. licheniformis using kitchen waste as substrate. Int J Hydrogen Energ. 2017;42(34):21659–66. https://doi.org/10.1016/j.ijhydene.2017.06.140.

    Article  CAS  Google Scholar 

  94. Vu DH, Wainaina S, Taherzadeh MJ, Åkesson D, Ferreira JA. Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered. 2021;12:2480–98. https://doi.org/10.1080/21655979.2021.1935524.

    Article  CAS  Google Scholar 

  95. Farah NO, Norrsquo Aini AR, Halimatun SH, Tabassum M, Phang LY, Mohd AH. Utilization of kitchen waste for the production of green thermoplastic polyhydroxybutyrate (PHB) by Cupriavidus necator CCGUG 52238. African J Microbiol Res. 2011;5(19):2873–9. https://doi.org/10.5897/AJMR11.156.

    Article  Google Scholar 

  96. Hafuka A, Sakaida K, Satoh H, Takahashi M, Watanabe Y, Okabe S. Effect of feeding regimens on polyhydroxybutyrate production from food wastes by Cupriavidus necator. Bioresour Technol. 2011;102(3):3551–3. https://doi.org/10.1016/j.biortech.2010.09.018.

    Article  CAS  Google Scholar 

  97. Martino L, Cruz MV, Scoma A, Freitas F, Bertin L, Scandola M, Reis MA. Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol. 2014;71:117–23. https://doi.org/10.1016/j.ijbiomac.2014.04.016.

    Article  CAS  Google Scholar 

  98. Ji M, Zheng T, Wang Z, Lai W, Zhang L, Zhang Q, Yang H, Meng S, Xu W, Zhao C, Wu Q, Chen G-Q. PHB production from food waste hydrolysates by Halomonas bluephagenesis harboring PHB operon linked with an essential gene. Metab Eng. 2023;77:12–20. https://doi.org/10.1016/j.ymben.2023.03.003.

    Article  CAS  Google Scholar 

  99. Borrero-de Acuña JM, Aravena-Carrasco C, Gutierrez-Urrutia I, Duchens D, Poblete-Castro I. Enhanced synthesis of medium-chain-length poly (3-hydroxyalkanoates) by inactivating the tricarboxylate transport system of Pseudomonas putida KT2440 and process development using waste vegetable oil. Process Biochem. 2019;77:23–30. https://doi.org/10.1016/j.procbio.2018.10.012.

    Article  CAS  Google Scholar 

  100. Sarkar D, Prajapati S, Poddar K, Sarkar A. Production of ethanol by Enterobacter sp EtK3 during fruit waste biotransformation. Int Biodeterior Biodegrad. 2019;145:1–7. https://doi.org/10.1016/j.ibiod.2019.104795.

    Article  CAS  Google Scholar 

  101. Dhiman SS, David A, Shrestha N, Johnson GR, Benjamin KM, Gadhamshetty V, Sani RK. Simultaneous hydrolysis and fermentation of unprocessed food waste into ethanol using thermophilic anaerobic bacteria. Bioresour Technol. 2017;244:733–40. https://doi.org/10.1016/j.biortech.2017.07.102.

    Article  CAS  Google Scholar 

  102. Ma H-Z, **ng Y, Yu M, Wang Q. Feasibility of converting lactic acid to ethanol in food waste fermentation by immobilized lactate oxidase. Appl Energy. 2014;129:89–93. https://doi.org/10.1016/j.apenergy.2014.04.098.

    Article  CAS  Google Scholar 

  103. Bibra M, Rathinam NK, Johnson GR, Sani RK. Single pot biovalorization of food waste to ethanol by Geobacillus and Thermoanaerobacter spp. Renew Energy. 2020;155:1032–41. https://doi.org/10.1016/j.renene.2020.02.093.

    Article  CAS  Google Scholar 

  104. Ma K, Ruan Z, Shui Z, Wang Y, Hu G, He M. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis. Bioresour Technol. 2016;203:295–302. https://doi.org/10.1016/j.biortech.2015.12.054.

    Article  CAS  Google Scholar 

  105. Huang H, Singh V, Qureshi N. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution. Biotechnol Biofuels. 2015;8:147. https://doi.org/10.1186/s13068-015-0332-x.

    Article  CAS  Google Scholar 

  106. Li Y, Liu Z, Ge X. Metabolic checkpoint aldehyde dehydrogenases are important for diverting β-oxidation into 1-butanol biosynthesis from kitchen waste oil in Pseudomonas aeruginosa. Appl Biochem Biotech. 2020;193:730–42. https://doi.org/10.1007/s12010-020-03456-x.

    Article  CAS  Google Scholar 

  107. Tang J, Wang X, Hu Y, Zhang Y, Li Y. Lactic acid fermentation from food waste with indigenous microbiota: effects of pH, temperature and high OLR. Waste Manag. 2016;52:278–85. https://doi.org/10.1016/j.wasman.2016.03.034.

    Article  CAS  Google Scholar 

  108. Yang L, Chen L, Li H, Deng Z, Liu J. Lactic acid production from mesophilic and thermophilic fermentation of food waste at different pH. J Environ Manage. 2022;304:114312. https://doi.org/10.1016/j.jenvman.2021.114312.

    Article  CAS  Google Scholar 

  109. Peinemann JC, Demichelis F, Fiore S, Pleissner D. Techno-economic assessment of non-sterile batch and continuous production of lactic acid from food waste. Bioresour Technol. 2019;289:121631. https://doi.org/10.1016/j.biortech.2019.121631.

    Article  CAS  Google Scholar 

  110. Mishra M, Chauhan S, Velramar B, Soni RK, Pamidimarri SDVN. Facile bioconversion of vegetable food waste into valuable organic acids and green fuels using synthetic microbial consortium. Korean J Chem Eng. 2021;38(4):833–42. https://doi.org/10.1007/s11814-020-0735-7.

    Article  CAS  Google Scholar 

  111. Tashiro Y, Matsumoto H, Miyamoto H, Okugawa Y, Pramod P, Miyamoto H, Sakai K. A novel production process for optically pure L-lactic acid from kitchen refuse using a bacterial consortium at high temperatures. Bioresour Technol. 2013;146:672–81. https://doi.org/10.1016/j.biortech.2013.07.102.

    Article  CAS  Google Scholar 

  112. Dessie W, Zhang W, **n F, Dong W, Zhang M, Ma J, Jiang M. Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation. Bioresour Technol. 2018;247:1177–80. https://doi.org/10.1016/j.biortech.2017.08.171.

    Article  CAS  Google Scholar 

  113. ** Q, Fang Q, Chen Y, Ding W, **ao Y, Wang Z, Zhou W. Effect of Fe3O4 on propionic acid production by anaerobic fermentation of waste cooking oil and aerobic sludge. J Water Process Eng. 2022;49:102910. https://doi.org/10.1016/j.jwpe.2022.102910.

    Article  Google Scholar 

  114. Li X, Zhang W, Ma L, Lai S, Zhao S, Chen Y, Liu Y. Improved production of propionic acid driven by hydrolyzed liquid containing high concentration of L-lactic acid from co-fermentation of food waste and sludge. Bioresour Technol. 2016;220:523–9. https://doi.org/10.1016/j.biortech.2016.08.066.

    Article  CAS  Google Scholar 

  115. Hasan MM, Marzan LW, Honsa A, Hakim A, Azad AK. Optimisation of some fermentation conditions for the production of extracellular amylases by using Chryseobacterium and Bacillus isolates from organic kitchen wastes. J Gene Eng Biotech. 2017;6:1–8. https://doi.org/10.1016/j.jgeb.2017.02.009.

    Article  Google Scholar 

  116. Saini V, Bhattacharya A, Gupta A. Effectiveness of sal deoiled seed cake as an inducer for protease production from Aeromonas sp. S1 for its application in kitchen wastewater treatment. Appl Biochem Biotechnol. 2013;170(8):1896–908. https://doi.org/10.1007/s12010-013-0323-y.

    Article  CAS  Google Scholar 

  117. Dhanarajan G, Mandal M, Sen R. A combined artificial neural network modeling–particle swarm optimization strategy for improved production of marine bacterial lipopeptide from food waste. Biochem Eng J. 2014;84:59–65. https://doi.org/10.1016/j.bej.2014.01.002.

    Article  CAS  Google Scholar 

  118. Chen C, Sun N, Li D, Long S, Tang X, **ao G, Wang L. Optimization and characterization of biosurfactant production from kitchen waste oil using Pseudomonas aeruginosa. Environ Sci Pollut Res. 2018;25(15):14934–43. https://doi.org/10.1007/s11356-018-1691-1.

    Article  CAS  Google Scholar 

  119. Pan FD, Liu S, Xu QM, Chen XY, Cheng JS. Bioconversion of kitchen waste to surfactin via simultaneous enzymolysis and fermentation using mixed-culture of enzyme-producing fungi and Bacillus amyloliquefaciens HM618. Biochem Eng J. 2021;172:108036. https://doi.org/10.1016/j.bej.2021.108036.

    Article  CAS  Google Scholar 

  120. Li P, Li T, Zeng Y, Li X, Jiang X, Wang Y, **e T, Zhang Y. Biosynthesis of xanthan gum by Xanthomonas campestris LRELP-1 using kitchen waste as the sole substrate. Carbohydr Polym. 2016;151:684–91. https://doi.org/10.1016/j.carbpol.2016.06.017.

    Article  CAS  Google Scholar 

  121. Demirci AS, Palabiyik I, Apaydın D, Mirik M, Gumus T. Xanthan gum biosynthesis using Xanthomonas isolates from waste bread: process optimization and fermentation kinetics. LWT. 2019;101:40–7. https://doi.org/10.1016/j.lwt.2018.11.018.

    Article  CAS  Google Scholar 

  122. Peng X-Y, Wang S-P, Chu X-L, Sun Z-Y, **a Z-Y, **e C-Y, Gou M, Tang Y-Q. Valorizing kitchen waste to produce value-added fertilizer by thermophilic semi-continuous composting followed by static stacking: performance and bacterial community succession analysis. Bioresour Technol. 2023;373:128732. https://doi.org/10.1016/j.biortech.2023.128732.

    Article  CAS  Google Scholar 

  123. Hu J, Cai W, Wang C, Du X, Lin J, Cai J. Purification and characterization of alkaline lipase production by Pseudomonas aeruginosa HFE733 and application for biodegradation in food wastewater treatment. Biotechnol Biotechnol Equip. 2018;32:583–90. https://doi.org/10.1080/13102818.2018.1446764.

    Article  CAS  Google Scholar 

  124. • Chong JWR, Khoo KS, Yew GY, Leong WH, Lim JW, Lam MK, et al. Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: a review. Bioresour Technol. 2021;342:125947. https://doi.org/10.1016/j.biortech.2021.125947. This review introduced the excellent KWAKWW treatment performance of microalgae and suggested utilizing genetic engineering, transcriptional engineering, and microalgae-bacteria consortia to strengthen the treatment ability of microalgae.

  125. Rude K, Yothers C, Barzee TJ, Kutney S, Zhang R, Franz A. Growth potential of microalgae on ammonia-rich anaerobic digester effluent for wastewater remediation. Algal Res. 2022;62: 102613. https://doi.org/10.1016/j.algal.2021.102613.

    Article  Google Scholar 

  126. Katam K, Bhattacharyya D. Comparative study on treatment of kitchen wastewater using a mixed microalgal culture and an aerobic bacterial culture: kinetic evaluation and FAME analysis. Environ Sci Pollut Res. 2018;25:20732–742. https://doi.org/10.1007/s11356-018-2209-6.

  127. Thanigaivel S, Vickram S, Manikandan S, Deena SR, Subbaiya R, Karmegam N, Govarthanan M, Kim W. Sustainability and carbon neutralization trends in microalgae bioenergy production from wastewater treatment: a review. Bioresour Technol. 2022;364:128057. https://doi.org/10.1016/j.biortech.2022.128057.

    Article  CAS  Google Scholar 

  128. Rasineni GK, Loh PC, Lim BH. Characterization of chlamydomonas ribulose-1, 5-bisphosphate carboxylase/oxygenase variants mutated at residues that are posttranslationally modified. BBA-Gen Subjects. 2017;1861(Issue 2):79–85. https://doi.org/10.1016/j.bbagen.2016.10.027.

    Article  CAS  Google Scholar 

  129. Boatman TG, Mangan NM, Lawson T, Geider RJ. Inorganic carbon and pH dependency of photosynthetic rates in Trichodesmium. J Exp Bot. 2018;69(15):3651–60. https://doi.org/10.1093/jxb/ery141.

    Article  CAS  Google Scholar 

  130. Giordano M, Beardall J, Raven JA. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol. 2005;56:99–131. https://doi.org/10.1146/annurev.arplant.56.032604.144052.

    Article  CAS  Google Scholar 

  131. Mukhopadhyay S, Jana A, Ghosh S, Majumdar S, Ghosh TK. Arthrospira sp. mediated bioremediation of gray water in ceramic membrane based photobioreactor: process optimization by response surface methodology. Int J Phytoremediat. 2022;24(13):1364–75. https://doi.org/10.1080/15226514.2022.2027865.

    Article  CAS  Google Scholar 

  132. • De Bhowmick G, Sen R, Sarmah AK. Consolidated bioprocessing of wastewater cocktail in an algal biorefinery for enhanced biomass, lipid and lutein production coupled with efficient CO2 capture: An advanced optimization approach. J Environ Manage. 2019;252:109696. https://doi.org/10.1016/j.jenvman.2019.109696. This paper manifested the illustrious nutrient removal, carbon fixation, and resource utilization ability of microalgae.

  133. Kumar PK, Krishna SV, Naidu SS, Verma K, Bhagawan D, Himabindu V. Biomass production from microalgae Chlorella grown in sewage, kitchen wastewater using industrial CO2 emissions: comparative study. Carbon Resour Convers. 2019;2:126–33. https://doi.org/10.1016/j.crcon.2019.06.002.

  134. Tian C, Ye X, Xu Y, Hua W, Wang W, Wu S, et al. Enhanced microalgae cultivation using digested kitchen waste sewage treated with struvite precipitation. Int J Agric Biol Eng. 2017;10(1):142–47. https://doi.org/10.3965/j.ijabe.20171001.2318.

  135. Kamyab H, Chelliapan S, Lee CT, Khademi T, Kumar A, Yadav KK, Rezania S, Kumar S, Ebrahimi SS. Improved production of lipid contents by cultivating Chlorella pyrenoidosa in heterogeneous organic substrates. Clean Technol Environ Policy. 2019;21:1969–78. https://doi.org/10.1007/s10098-019-01743-8.

    Article  CAS  Google Scholar 

  136. Pei H, Jiang L, Hou Q, Yu Z. Toward facilitating microalgae cope with effluent from anaerobic digestion of kitchen waste: the art of agricultural phytohormones. Biotechnol Biofuels. 2017;10:1–18. https://doi.org/10.1186/s13068-017-0759-3.

    Article  CAS  Google Scholar 

  137. Tan XB, Wang L, Wan XP, Zhou XN, Yang LB, Zhang WW, Zhao XC. Growth of Chlorella pyrenoidosa on different septic tank effluents from rural areas for lipids production and pollutants removal. Bioresour Technol. 2021;339:125502. https://doi.org/10.1016/j.biortech.2021.125502.

    Article  CAS  Google Scholar 

  138. Nwoba EG, Mickan BS, Moheimani NR. Chlorella sp. growth under batch and fed-batch conditions with effluent recycling when treating the effluent of food waste anaerobic digestate. J Appl Phycol. 2019;31:3545–56. https://doi.org/10.1007/s10811-019-01878-7.

    Article  CAS  Google Scholar 

  139. Shin DY, Cho HU, Utomo JC, Choi YN, Xu X, Park JM. Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent. Bioresour Technol. 2015;184:215–21. https://doi.org/10.1016/j.biortech.2014.10.090.

    Article  CAS  Google Scholar 

  140. Babu A, Katam K, Gundupalli MP, Bhattacharyya D. Nutrient removal from wastewater using microalgae: a kinetic evaluation and lipid analysis. Water Environ Res. 2018;90(6):520–9. https://doi.org/10.2175/106143017X15054988926299.

    Article  CAS  Google Scholar 

  141. Castillo T, Ramos D, García-Beltrán T, Brito-Bazan M, Galindo E. Mixotrophic cultivation of microalgae: an alternative to produce high-value metabolites. Biochem Eng J. 2021;176:108183. https://doi.org/10.1016/j.bej.2021.108183.

    Article  CAS  Google Scholar 

  142. Pradhan N, Kumar S, Selvasembian R, Rawat S, Gangwar A, Senthamizh R, Yuen YK, Luo L, Ayothiraman S, Saratale GD, Mal J. Emerging trends in the pretreatment of microalgal biomass and recovery of value-added products: a review. Bioresour Technol. 2023;369:128395. https://doi.org/10.1016/j.biortech.2022.128395.

    Article  CAS  Google Scholar 

  143. Rastogi RP, Sonani RR, Madamwar D, Incharoensakdi A. Characterization and antioxidant functions of mycosporine-like amino acids in the cyanobacterium Nostoc sp. R76DM. Algal Res. 2016;16:110–8. https://doi.org/10.1016/j.algal.2016.03.009.

    Article  Google Scholar 

  144. Wang X, Zhang MM, Liu SF, Xu RL, Mou JH, Qin ZH, Zhou ZG, Li HY, Lin CSK, Sun Z. Synergistic bioconversion of lipids and carotenoids from food waste by Dunaliella salina with fulvic acid via a two-stage cultivation strategy. Energy Convers Manag. 2021;234:113908. https://doi.org/10.1016/j.enconman.2021.113908.

    Article  CAS  Google Scholar 

  145. Zhai Q, Hong Y, Wang X, Wang Q, Zhao G, Liu X, et al. Mixing starch wastewaters to balance nutrients for improving nutrient removal, microalgae growth and accumulation of high value-added products. Water Cycle. 2022;3:151–59. https://doi.org/10.1016/j.watcyc.2022.09.004.

  146. Sharma S, Show PL, Aminabhavi TM, Sevda S, Garlapati VK. Valorization of environmental-burden waste towards microalgal metabolites production. Environ Res. 2023;227:115320. https://doi.org/10.1016/j.envres.2023.115320.

    Article  CAS  Google Scholar 

  147. Amorim ML, Soares J, Coimbra JSDR. Leite MdO, Albino LFT, Martins MA. Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Crit Rev Food Sci Nutr. 2021;61(12):1976–2002. https://doi.org/10.1080/10408398.2020.1768046.

    Article  CAS  Google Scholar 

  148. Sui Y, Vlaeminck SE. Dunaliella microalgae for nutritional protein: an undervalued asset. Trends Biotechnol. 2020;38:10–2. https://doi.org/10.1016/j.tibtech.2019.07.011.

    Article  CAS  Google Scholar 

  149. Sui Y, Muys M, Vermeir P, D’Adamo S, Vlaeminck SE. Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina. Bioresour Technol. 2019;275:145–52. https://doi.org/10.1016/j.biortech.2018.12.046.

    Article  CAS  Google Scholar 

  150. Zhang L, Cheng J, Pei H, Pan J, Jiang L, Hou Q, Han F. Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production. Renew Energy. 2018;115:276–87. https://doi.org/10.1016/j.renene.2017.08.034.

    Article  CAS  Google Scholar 

  151. Khoo KS, Ahmad I, Chew KW, Iwamoto K, Bhatnagar A, Show PL. Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: a review. Prog Energy Combust Sci. 2023;96:101071. https://doi.org/10.1016/j.pecs.2023.101071.

    Article  Google Scholar 

  152. Sajjadi B, Chen W-Y, Raman AAA, Ibrahim S. Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew Sustain Energy Rev. 2018;97:200–32. https://doi.org/10.1016/j.rser.2018.07.050.

    Article  CAS  Google Scholar 

  153. Tang DYY, Yew GY, Koyande AK, Chew KW, Vo DVN, Show PL. Green technology for the industrial production of biofuels and bioproducts from microalgae: a review. Environ Chem Lett. 2020;1:19. https://doi.org/10.1007/s10311-020-01052-3.

    Article  CAS  Google Scholar 

  154. Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel production. Energies. 2012;5:1532–53. https://doi.org/10.3390/en5051532.

    Article  CAS  Google Scholar 

  155. Maltsev Y, Maltseva K. Fatty acids of microalgae: diversity and applications. Rev Environ Sci Biotechnol. 2021;20(2):515–47. https://doi.org/10.1007/s11157-021-09571-3.

    Article  CAS  Google Scholar 

  156. Karpagam R, Abinaya N, Gnanam R. Assortment of native microalgae for improved biomass and lipid production on employing vegetable waste as a frugal cultivation approach for biodiesel application. Curr Microbiol. 2021;78(10):3770–81. https://doi.org/10.1007/s00284-021-02643-1.

    Article  CAS  Google Scholar 

  157. Feng PZ, Xu ZB, Qin L, Alam MA, Wang ZM, Zhu SN. Effects of different nitrogen sources and light paths of flat plate photobioreactors on the growth and lipid accumulation of Chlorella sp. GN1 outdoors. Bioresour Technol. 2020;301:122726. https://doi.org/10.1016/j.biortech.2020.122762.

    Article  CAS  Google Scholar 

  158. Liu Z, Gao Y, Chen J, Imanaka T, Bao J, Hua Q. Analysis of metabolic fluxes for better understanding of mechanisms related to lipid accumulation in oleaginous yeast Trichosporon cutaneum. Bioresour Technol. 2013;130:144–51. https://doi.org/10.1016/j.biortech.2012.12.072.

    Article  CAS  Google Scholar 

  159. Choi YY, Patel AK, Hong ME, Chang WS, Sim SJ. Microalgae Bioenergy with Carbon Capture and Storage (BECCS): an emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour Technol Rep. 2019;7:100270. https://doi.org/10.1016/j.biteb.2019.100270.

    Article  Google Scholar 

  160. De Bhowmick G, Sarmah AK, Sen R. Performance evaluation of an outdoor algal biorefinery for sustainable production of biomass, lipid and lutein valorizing flue-gas carbon dioxide and wastewater cocktail. Bioresour Technol. 2019;283:198–206. https://doi.org/10.1016/j.biortech.2019.03.075.

    Article  CAS  Google Scholar 

  161. Liang GB, Mo YW, Zhou QF. Optimization of digested chicken manure filtrate supplementation for lipid overproduction in heterotrophic culture Chlorella protothecoides. Fuel. 2013;108:159–65. https://doi.org/10.1016/j.fuel.2013.02.003.

    Article  CAS  Google Scholar 

  162. Lin TS, Wu JY. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour Technol. 2015;184:100–7. https://doi.org/10.1016/j.biortech.2014.11.005.

    Article  CAS  Google Scholar 

  163. Bibi F, Jamal A, Huang Z, Urynowicz M, Ali MI. Advancement and role of abiotic stresses in microalgae biorefinery with a focus on lipid production. Fuel. 2022;316:123192. https://doi.org/10.1016/j.fuel.2022.123192.

    Article  CAS  Google Scholar 

  164. • Pei H, Zhang L, Betenbaugh MJ, Jiang L, Lin X, Ma C, et al. Highly efficient harvesting and lipid extraction of limnetic Chlorella sorokiniana SDEC-18 grown in seawater for microalgal biofuel production. Algal Res. 2022;66:102813. https://doi.org/10.1016/j.algal.2022.102813. This article emphasized that using seawater to cultivate microalgae could improve the lipids productivity of microalgae and the extraction efficiency of microalgal lipids.

  165. de Medeiros VPB, Pimentel TC, Varandas RCR, Dos Santos SA, de Souza Pedrosa GT, da Costa Sassi CF, da Conceição MM, Magnani M. Exploiting the use of agro-industrial residues from fruit and vegetables as alternative microalgae culture medium. Food Res Int. 2020;137:109722. https://doi.org/10.1016/j.foodres.2020.109722.

    Article  CAS  Google Scholar 

  166. Koçer AT, İnan B, Özçimen D, Gökalp İ. A study of microalgae cultivation in hydrothermal carbonization process water: nutrient recycling, characterization and process design. Environ Technol Innov. 2023;30: 103048. https://doi.org/10.1016/j.eti.2023.103048.

    Article  CAS  Google Scholar 

  167. Cheng J, Ye Q, Xu J, Yang ZB, Zhou JH, Cen KF. Improving pollutants removal by microalgae Chlorella PY-ZU1 with 15% CO2 from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment. Bioresour Technol. 2016;216:273–9. https://doi.org/10.1016/j.biortech.2016.05.069.

    Article  CAS  Google Scholar 

  168. Sloth JK, Jensen HC, Pleissner D, Eriksen NT. Growth and phycocyanin synthesis in the heterotrophic microalga Galdieria sulphuraria on substrates made of food waste from restaurants and bakeries. Bioresour Technol. 2017;238:296–305. https://doi.org/10.1016/j.biortech.2017.04.043.

    Article  CAS  Google Scholar 

  169. Haske-Cornelius O, Vu T, Schmiedhofer C, Vielnascher R, Dielacher M, Sachs V, Grasmug M, Kromus S, Guebitz GM. Cultivation of heterotrophic algae on enzymatically hydrolyzed municipal food waste. Algal Res. 2020;50:101993. https://doi.org/10.1016/j.algal.2020.101993.

    Article  Google Scholar 

  170. Chi Z, Zheng Y, Jiang A, Chen S. Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl Biochem Biotechnol. 2011;165:442–53. https://doi.org/10.1007/s12010-011-9263-6.

    Article  CAS  Google Scholar 

  171. Pleissner D, Lam WC, Sun Z, Lin CSK. Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour Technol. 2013;137:139–46. https://doi.org/10.1016/j.biortech.2013.03.088.

    Article  CAS  Google Scholar 

  172. Lau KY, Pleissner D, Lin CSK. Recycling of food waste as nutrients in Chlorella vulgaris cultivation. Bioresour Technol. 2014;170:144–51. https://doi.org/10.1016/j.biortech.2014.07.096.

    Article  CAS  Google Scholar 

  173. Pleissner D, Lau KY, Ki Lin CS. Utilization of food waste in continuous flow cultures of the heterotrophic microalga Chlorella pyrenoidosa for saturated and unsaturated fatty acids production. J Clean Prod. 2017;142(Part 4):1417–24. https://doi.org/10.1016/j.jclepro.2016.11.165.

    Article  CAS  Google Scholar 

  174. Yu Z, Song M, Pei H, Han F, Jiang L, Hou Q. The growth characteristics and biodiesel production of ten algae strains cultivated in anaerobically digested effluent from kitchen waste. Algal Res. 2017;24:265–75. https://doi.org/10.1016/j.algal.2017.04.010.

    Article  Google Scholar 

  175. Wang X, Liu SF, Qin ZH, Balamurugan S, Li HY, Lin CSK. Sustainable and stepwise waste-based utilisation strategy for the production of biomass and biofuels by engineered microalgae. Environ Pollut. 2020;265:114854. https://doi.org/10.1016/j.envpol.2020.114854.

  176. Almutairi AW, Al-Hasawi ZM, Abomohra AEF. Valorization of lipidic food waste for enhanced biodiesel recovery through two-step conversion: a novel microalgae-integrated approach. Bioresour Technol. 2021;342: 125966. https://doi.org/10.1016/j.biortech.2021.125966.

    Article  CAS  Google Scholar 

  177. Wang X, Liu SF, Wang ZY, Hao TB, Balamurugan S, Li DW, et al. A waste upcycling loop: Two-factor adaptive evolution of microalgae to increase polyunsaturated fatty acid production using food waste. J Clean Prod. 2022;331:130018. https://doi.org/10.1016/j.jclepro.2021.130018.

  178. Wang X, Balamurugan S, Liu S-F, Zhang M-M, Yang W-D, Liu J-S, Li H-Y, Lin CSK. Enhanced polyunsaturated fatty acid production using food wastes and biofuels byproducts by an evolved strain of Phaeodactylum tricornutum. Bioresour Technol. 2020;296:122351. https://doi.org/10.1016/j.biortech.2019.122351.

    Article  CAS  Google Scholar 

  179. Patel A, Hruzova K, Rova U, Christakopoulos P, Matsakas L. Sustainable biorefinery concept for biofuel production through holistic volarization of food waste. Bioresour Technol. 2019;294:122247. https://doi.org/10.1016/j.biortech.2019.122247.

    Article  CAS  Google Scholar 

  180. Tale M, Ghosh S, Kapadnis B, Kale S. Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent. Bioresour Technol. 2014;169:328–35. https://doi.org/10.1016/j.biortech.2014.06.017.

    Article  CAS  Google Scholar 

  181. Wang X, Zhang MM, Sun Z, Liu SF, Qin ZH, Mou JH, Zhou ZG, Lin CSK. Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. J Hazard Mater. 2020;400:123258. https://doi.org/10.1016/j.jhazmat.2020.123258.

    Article  CAS  Google Scholar 

  182. Liu M, Yu Z, Jiang L, Hou Q, **e Z, Ma M, Yu S, Pei H. Monosodium glutamate wastewater assisted seawater to increase lipid productivity in single-celled algae. Renew Energ. 2021;179:1793–802. https://doi.org/10.1016/j.renene.2021.08.006.

    Article  CAS  Google Scholar 

  183. Jiang L, Zhang L, Nie C, Pei H. Lipid productivity in limnetic Chlorella is doubled by seawater added with anaerobically digested effluent from kitchen waste. Biotechnol Biofuels. 2018;11:68. https://doi.org/10.1186/s13068-018-1064-5.

    Article  CAS  Google Scholar 

  184. De Bhowmick G, Sen R, Sarmah AK. Analysis of growth and intracellular product synthesis dynamics of a microalga cultivated in wastewater cocktail as medium. Biochem Eng J. 2019;149:107253. https://doi.org/10.1016/j.bej.2019.107253.

    Article  CAS  Google Scholar 

  185. • Talapatra N, Ghosh UK. New concept of biodiesel production using food waste digestate powder: Co-culturing algae-activated sludge symbiotic system in low N and P paper mill wastewater. Sci Total Environ. 2022;844:157207. https://doi.org/10.1016/j.scitotenv.2022.157207. This article indicated that microalgae-bacteria consortia could efficiently remove nutrients and accumulate large amounts of lipids from ADE-KW.

  186. Sutherland DL, Burke J, Leal E, Ralph PJ. Effects of nutrient load on microalgal productivity and community composition grown in anaerobically digested food-waste centrate. Algal Res. 2020;51:102037. https://doi.org/10.1016/j.algal.2020.102037.

    Article  Google Scholar 

  187. Sutherland DL, Bramucci A. Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae. J Environ Manag. 2022;313:115018. https://doi.org/10.1016/j.jenvman.2022.115018.

    Article  CAS  Google Scholar 

  188. • Li B, Bao M, Liu Y, Cheng L, Cui B, Hu Z. Novel shortcut biological nitrogen removal using activated sludge-biofilm coupled with symbiotic algae. J Water Process Eng. 2021;43:102275. https://doi.org/10.1016/j.jhazmat.2020.123258. This article found that microalgae-bacteria consortia enhanced their nutrient purification ability and reduced operation costs through secreting HA and releasing O2.

  189. Lipczynska-Kochany E. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: a review. Chemosphere. 2018;202:420–37. https://doi.org/10.1016/j.chemosphere.2018.03.104.

  190. Zhang S, Su J, Ali A, Zheng Z, Sun Y. Enhanced denitrification performance of strain YSF15 by different molecular weight of humic acid: Mechanism based on the biological products and activity. Bioresour Technol. 2021;325:124709. https://doi.org/10.1016/j.biortech.2021.124709.

  191. Albers CN, Ellegaard-Jensen L, Hansen LH, Sorensen SR. Bioaugmentation of rapid sand filters by microbiome priming with a nitrifying consortium will optimize production of drinking water from groundwater. Water Res. 2018;129:1–10. https://doi.org/10.1016/j.watres.2017.11.009.

    Article  CAS  Google Scholar 

  192. Marín D, Méndez L, Suero I, Díaz I, Blanco S, Fdz-Polanco M, et al. Anaerobic digestion of food waste coupled with biogas upgrading in an outdoors algal-bacterial photobioreactor at pilot scale. Fuel. 2022;324(Part A):124554. https://doi.org/10.1016/j.fuel.2022.124554.

  193. Chen X, Hu Z, Qi Y, Song C, Chen G. The interactions of algae-activated sludge symbiotic system and its effects on wastewater treatment and lipid accumulation. Bioresour Technol. 2019;292:122017. https://doi.org/10.1016/j.biortech.2019.122017.

    Article  CAS  Google Scholar 

  194. Fernandes F, Silkina A, Gayo-Peláez JI, Kapoore RV, de la Broise D, Llewellyn CA. Microalgae cultivation on nutrient rich digestate: the importance of strain and digestate tailoring under PH control. Appl Sci. 2022;12:5429. https://doi.org/10.3390/app12115429.

    Article  CAS  Google Scholar 

  195. Leong WH, Lim JW, Lam MK, Uemura Y, Ho CD, Ho YC. Co-cultivation of activated sludge and microalgae for the simultaneous enhancements of nitrogen-rich wastewater bioremediation and lipid production. J Taiwan Inst Chem Eng. 2018;87:216–24. https://doi.org/10.1016/j.jtice.2018.03.038.

    Article  CAS  Google Scholar 

  196. Zhang C, Li S, Ho S-H. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: a critical review. Bioresour Technol. 2021;342:126056. https://doi.org/10.1016/j.biortech.2021.126056.

    Article  CAS  Google Scholar 

  197. Manhaeghe D, Allosserie A, Rousseau DPL, Van Hulle SWH. Model based analysis of carbon fluxes within microalgae-bacteria flocs using respirometric-titrimetric data. Sci Total Environ. 2021;784:147048. https://doi.org/10.1016/j.scitotenv.2021.147048.

    Article  CAS  Google Scholar 

  198. Fallahi A, Rezvani F, Asgharnejad H, Nazloo EK, Ha**ajaf N, Higgins B. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: a review. Chemosphere. 2021;272:129878. https://doi.org/10.1016/j.chemosphere.2021.129878.

    Article  CAS  Google Scholar 

  199. Li L, Liu W, Liang T, Ma F. The adsorption mechanisms of algae-bacteria symbiotic system and its fast formation process. Bioresour Technol. 2020;315:123854. https://doi.org/10.1016/j.biortech.2020.123854.

    Article  CAS  Google Scholar 

  200. Matho C, Schwarzenberger K, Eckert K, Keshavarzi B, Walther T, Steingroewer J, Krujatz F. Bio-compatible flotation of Chlorella vulgaris: study of zeta potential and flotation efficiency. Algal Res. 2019;44:101705. https://doi.org/10.1016/j.algal.2019.101705.

    Article  Google Scholar 

  201. Wang X, Dong H-P, Wei W, Balamurugan S, Yang W-D, Liu J-S, Li H-Y. Dual expression of plastidial GPAT1 and LPAT1 regulates triacylglycerol production and the fatty acid profile in Phaeodactylum tricornutum. Biotechnol Biofuels. 2018;11:318. https://doi.org/10.1186/s13068-018-1317-3.

    Article  CAS  Google Scholar 

  202. Rathod JP, Vira C, Lali AM, Prakash G. Metabolic engineering of Chlamydomonas reinhardtii for enhanced beta-carotene and lutein production. Appl Biochem Biotechnol. 2020;190(4):1457–69. https://doi.org/10.1007/s12010-019-03194-9.

    Article  CAS  Google Scholar 

  203. Fang H, Li D, Kang J, Jiang P, Sun J, Zhang D. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat Commun. 2018;9:4917. https://doi.org/10.1038/s41467-018-07412-6.

    Article  CAS  Google Scholar 

  204. Jiang L, Li Y, Pei H. Algal–bacterial consortia for bioproduct generation and wastewater treatment. Renew Sustain Energy Rev. 2021;149:111395. https://doi.org/10.1016/j.rser.2021.111395.

    Article  CAS  Google Scholar 

  205. Wu H, Yang J, Shen P, Li Q, Wu W, Jiang X, Qin L, Huang J, Cao X, Qi F. High-level production of indole-3-acetic acid in the metabolically engineered Escherichia coli. J Agric Food Chem. 2021;69:1916–24. https://doi.org/10.1021/acs.jafc.0c08141.

    Article  CAS  Google Scholar 

  206. Kumar SD, Yasasve M, Karthigadevi G, Aashabharathi M, Subbaiya R, Karmegam N, Govarthanan M. Efficiency of microbial fuel cells in the treatment and energy recovery from food wastes: trends and applications-a review. Chemosphere. 2022;287:132439. https://doi.org/10.1016/j.chemosphere.2021.132439.

    Article  CAS  Google Scholar 

  207. Hou Q, Yang Z, Chen S, Pei H. Using an anaerobic digestion tank as the anodic chamber of an algae-assisted microbial fuel cell to improve energy production from food waste. Water Res. 2020;170:115305. https://doi.org/10.1016/j.watres.2019.115305.

    Article  CAS  Google Scholar 

  208. Yoshizu D, Kouzuma A, Watanabe K. Use of microbial fuel cells for the treatment of residue effluents discharged from an anaerobic digester treating food wastes. Microorganisms. 2023;11(3):598. https://doi.org/10.3390/microorganisms11030598.

    Article  CAS  Google Scholar 

  209. Chen D, Shen J, Jiang X, Su G, Han W, Sun X, Li J, Mu Y, Wang L. Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system. Water Res. 2019;157:8–18. https://doi.org/10.1016/j.watres.2019.03.054.

    Article  CAS  Google Scholar 

  210. Hussain A, Lee J, **ong Z, Wang Y, Lee H-S. Butyrate production and purification by combining dry fermentation of food waste with a microbial fuel cell. J Environ Manage. 2021;300:113827. https://doi.org/10.1016/j.jenvman.2021.113827.

    Article  CAS  Google Scholar 

  211. Lafi H, Panu U, Liao B. Effect of the organic carbon to nutrient (N and P) ratio on the biological performance of a microalgal–bacterial membrane photobioreactor. Environ Sci: Water Res Technol. 2023;9:2021–30. https://doi.org/10.1039/D3EW00117B.

    Article  CAS  Google Scholar 

  212. Segredo-Morales E, González E, González-Martín C, Vera L. Secondary wastewater effluent treatment by microalgal-bacterial membrane photobioreactor at long solid retention times. J Water Process Eng. 2022;49:103200. https://doi.org/10.1016/j.jwpe.2022.103200.

    Article  Google Scholar 

  213. Aydin S, Ünlü İD, Arabacı DN, Duru ÖA. Evaluating the effect of microalga Haematococcus pluvialis bioaugmentation on aerobic membrane bioreactor in terms of performance, membrane fouling and microbial community structure. Sci Total Environ. 2022;807:149908. https://doi.org/10.1016/j.scitotenv.2021.149908.

    Article  CAS  Google Scholar 

  214. Yu Z, Pei H, Li Y, Yang Z, **e Z, Hou Q, Nie C. Inclined algal biofilm photobioreactor (IABPBR) for cost-effective cultivation of lipid-rich microalgae and treatment of seawater-diluted anaerobically digested effluent from kitchen waste with the aid of phytohormones. Bioresour Technol. 2020;315:123761. https://doi.org/10.1016/j.biortech.2020.123761.

    Article  CAS  Google Scholar 

  215. Ritigala T, Chen Y, Zheng J, Demissie H, Zheng L, Yu D, Sui Q, Chen M, Zhu J, Fan H, Li J, Gao Q, Weragoda SK, Weerasooriya R, **adasa K, Wei Y. Comparison of an integrated short-cut biological nitrogen removal process with magnetic coagulation treating swine wastewater and food waste digestate. Bioresour Technol. 2021;329:124904. https://doi.org/10.1016/j.biortech.2021.124904.

    Article  CAS  Google Scholar 

  216. Yin J, Jiang J, Tang Q. Advanced treatment of digested restaurant wastewater using a combination of anaerobic/oxicunit, Fenton, and a biological aerated filter in pilot-scale treatment. Water Air Soil Poll. 2023;234:92. https://doi.org/10.1007/s11270-023-06106-0.

    Article  CAS  Google Scholar 

  217. Yang Z, Nie C, Hou Q, Zhang L, Zhang S, Yu Z, Pei H. Coupling a photosynthetic microbial fuel cell (PMFC) with photobioreactors (PBRs) for pollutant removal and bioenergy recovery from anaerobically digested effluent. Chem Eng J. 2019;359:402–8. https://doi.org/10.1016/j.cej.2018.11.136.

    Article  CAS  Google Scholar 

  218. Tahmasebi P, Kamrava S, Bai T, Sahimi M. Machine learning in geo- and environmental sciences: from small to large scale. Adv Water Resour. 2020;142:103619. https://doi.org/10.1016/j.advwatres.2020.103619.

    Article  Google Scholar 

  219. Gurjar R, Behera M. Optimization and modelling of volatile fatty acid generation in a leachate bed reactor for utilization in microbial fuel cells. Water Environ J. 2023;37(3):581–93. https://doi.org/10.1111/wej.12861.

    Article  CAS  Google Scholar 

  220. Long F, Fan J, Liu H. Prediction and optimization of medium-chain carboxylic acids production from food waste using machine learning models. Bioresour Technol. 2023;370:128533. https://doi.org/10.1016/j.biortech.2022.128533.

    Article  CAS  Google Scholar 

  221. Long F, Fan J, Xu W, Liu H. Predicting the performance of medium-chain carboxylic acid (MCCA) production using machine learning algorithms and microbial community data. J Clean Prod. 2022;377:134223. https://doi.org/10.1016/j.jclepro.2022.134223.

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by the National Natural Science Foundation of China (No. 52270021) and the Scientific Research Project supported by Enterprise (No.2023-HXFW-0040, No.2023-HXFW-0025, and No.2022-HXFW-0002).

Author information

Authors and Affiliations

Authors

Contributions

Z.W. wrote the manuscript and prepared all the tables and figures. Y.H. provided funding and revised the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Yu Hong.

Ethics declarations

Conflict of Interest

The authors declare no competing interests. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Human and Animal Rights and Informed Consent

This article does not contain any study with human and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Hong, Y. Microbial-Based Treatment of Kitchen Waste and Kitchen Wastewater: State-of-the-Art Progress and Emerging Research Prospects Related to Microalgae and Bacteria. Curr Pollution Rep 10, 139–171 (2024). https://doi.org/10.1007/s40726-024-00300-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-024-00300-2

Keywords

Navigation