Log in

Metal Fatigue-Limit Estimation Based on Intrinsic Dissipated Energy

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Fatigue-limit estimation of engineering materials through thermographic methods has been improved for reliable prediction. In this study, the fatigue limit for STS304 austenitic stainless steel was estimated at load frequencies of 1 and 5 Hz on the basis of the surface temperature change and intrinsic dissipated energy. The sensitivity of STS 304 steel to fatigue damage, the deviation of the measurement data, and the determination coefficient of the predicted fatigue limit were measured at various stress amplitudes through a fatigue test. When the intrinsic dissipated energy was adopted as an indicator, it significantly improved the damage sensitivity and the reliability coefficient in comparison to the surface-temperature change. The intrinsic dissipated energy behavior at 5 Hz predicted a reliable fatigue limit, in which the predicted limit value was approximately 10% lower than that obtained by the staircase method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fatemi, A., & Yang, L. (1998). Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. International Journal of Fatigue, 20, 9–34. https://doi.org/10.1016/S0142-1123(97)00081-9

    Article  Google Scholar 

  2. Pyttel, B., Schwerdt, D., & Berger, C. (2011). Very high cycle fatigue—is there a fatigue limit? International Journal of Fatigue, 33, 49–58. https://doi.org/10.1016/j.ijfatigue.2010.05.009

    Article  Google Scholar 

  3. Lee, G., Park, J. H., & Choi, N. S. (2021). Measurement of fatigue limit of circular hole notched metals using infrared thermography. Korean Society of Mechanical Engineers A, 45, 367–376. https://doi.org/10.3795/KSME-A.2021.45.5.367

  4. Bodelot, L., Sabatier, L., Charkaluk, E., & Dufrénoy, P. (2009). Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an AISI 316L steel. Materials Science and Engineering A, 501, 52–60. https://doi.org/10.1016/j.msea.2008.09.053

    Article  Google Scholar 

  5. La Rosa, G., & Risitano, A. (2000). Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International Journal of Fatigue, 22, 65–73. https://doi.org/10.1016/S0142-1123(99)00088-2

    Article  Google Scholar 

  6. Luong, M. P. (1992). Infrared Thermography of fatigue in metals. Proceedings of Thermosense XIV, 1682, 222–233. https://doi.org/10.1117/12.58539

  7. Luong, M. P. (1995). Infrared thermographic scanning of fatigue in metals. Nuclear Engineering and Design, 158, 363–376. https://doi.org/10.1016/0029-5493(95)01043-H

    Article  Google Scholar 

  8. Luong, M. P. (1998). Fatigue limit evaluation of metals using an infrared thermographic technique. Mechanics of Materials, 28, 155–163. https://doi.org/10.1016/S0167-6636(97)00047-1

    Article  Google Scholar 

  9. Curà, F., Curti, G., & Sesana, R. (2005). A new iteration method for the thermographic determination of fatigue limit in steels. International Journal of Fatigue, 27, 453–459. https://doi.org/10.1016/j.ijfatigue.2003.12.009

    Article  Google Scholar 

  10. Doudard, C., Calloch, S., Cugy, P., Galtier, A., & Hild, F. (2005). A probabilistic two-scale model for high-cycle fatigue life predictions. Fatigue & Fracture of Engineering Materials & Structures, 28, 279–288. https://doi.org/10.1111/j.1460-2695.2005.00854.x

    Article  Google Scholar 

  11. Lemaitre, J., & Doghri, I. (1994). Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering, 115, 197–232. https://doi.org/10.1016/0045-7825(94)90060-4

    Article  Google Scholar 

  12. Lemaitre, J., Sermage, J. P., & Desmorat, R. (1999). A two scale damage concept applied to fatigue. International Journal of Fracture, 97, 67–81. https://doi.org/10.1023/A:1018641414428

    Article  Google Scholar 

  13. Yan, Z., Zhang, H., Wang, W., Kai, W., & Pei, F. (2013). Temperature evolution and fatigue life evaluation of AZ31B magnesium alloy based on infrared thermography. Transactions of Nonferrous Metals Society of China, 23, 1942–1948. https://doi.org/10.1016/S1003-6326(13)62681-3

    Article  Google Scholar 

  14. Xu, L., Wang, Q., & Zhou, M. (2018). Micro-crack initiation and propagation in a high strength aluminum alloy during very high cycle fatigue. Materials Science and Engineering A, 715, 404–413. https://doi.org/10.1016/j.msea.2018.01.008

    Article  Google Scholar 

  15. Foti, P., Santonocito, D., Ferro, P., Risitano, G., & Berto, F. (2020). Determination of fatigue limit by static thermographic method and classic thermographic method on notched specimens. Procedia Structural Integrity, 26, 166–174. https://doi.org/10.1016/j.prostr.2020.06.020

    Article  Google Scholar 

  16. Maquin, F., & Pierron, F. (2009). Heat dissipation measurements in low stress cyclic loading of metallic materials: From internal friction to micro-plasticity. Mechanics of Materials, 41, 928–942. https://doi.org/10.1016/j.mechmat.2009.03.003

    Article  Google Scholar 

  17. Yang, B., Liaw, P. K., Morrison, M., Liu, C. T., Buchanan, R. A., & Huang, J. G. (2001). Thermographic investigation of the fatigue behavior of reactor pressure vessel steels. Materials Science and Engineering A, 314, 131–139. https://doi.org/10.1016/S0921-5093(00)01910-9

    Article  Google Scholar 

  18. Yang, B., Liaw, P. K., Morrison, M., Liu, C. T., Buchanan, R. A., Huang, J. G., Kuo, R. C., & Fielden, D. E. (2005). Temperature evolution during fatigue damage. Intermetallics, 13, 419–428. https://doi.org/10.1016/j.intermet.2004.07.032

    Article  Google Scholar 

  19. Audenino, A. L., Crupi, V., & Zanetti, E. M. (2003). Correlation between thermography and internal dam** in metals. International Journal of Fatigue, 25, 343–351. https://doi.org/10.1016/S0142-1123(02)00137-8

    Article  Google Scholar 

  20. Boulanger, T., Chrysochoos, A., Mabru, C., & Galtier, A. (2004). Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. International Journal of Fatigue, 26, 221–229. https://doi.org/10.1016/S0142-1123(03)00171-3

    Article  Google Scholar 

  21. Morabito, A. E., Chrysochoos, A., Dattoma, V., & Galietti, U. (2007). Analysis of heat sources accompanying the fatigue of 2024 T3 aluminium alloys. International Journal of Fatigue, 29, 977–984. https://doi.org/10.1016/j.ijfatigue.2006.06.015

    Article  Google Scholar 

  22. Blanche, A., Chrysochoos, A., Ranc, N., & Favier, V. (2015). Dissipation assessments during dynamic very high cycle fatigue tests. Experimental Mechanics, 55, 699–709. https://doi.org/10.1007/s11340-014-9857-3

    Article  Google Scholar 

  23. Meneghetti, G. (2007). Analysis of the fatigue strength of a stainless steel based on the energy dissipation. International Journal of Fatigue, 29, 81–94. https://doi.org/10.1016/j.ijfatigue.2006.02.043

    Article  Google Scholar 

  24. Ricotta, M., Meneghetti, G., Atzori, B., Risitano, G., & Risitano, A. (2011). Comparison of experimental thermal methods for the fatigue limit evaluation of a stainless steel. Metals, 9, 677. https://doi.org/10.3390/met9060677

    Article  Google Scholar 

  25. Meneghetti, G., Ricotta, M., & Atzori, B. (2013). A synthesis of the push-pull fatigue behavior of plain and notched stainless steel specimens by using the specific heat loss. Fatigue & Fracture of Engineering Materials & Structures, 36, 1306–1322. https://doi.org/10.1111/ffe.12071

    Article  Google Scholar 

  26. Mareau, C., Favier, V., Weber, B., & Galtier, A. (2009). Influence of the free surface and the mean stress on the heat dissipation in steels under cyclic loading. International Journal of Fatigue, 31, 1407–1412. https://doi.org/10.1016/j.ijfatigue.2009.03.022

    Article  Google Scholar 

  27. Meyers, M. A., & Chawla, K. K. (1999). Mechanical behavior of materials. Cambridge University Press. Section 13.11.

    MATH  Google Scholar 

  28. Maquin, F., & Pierron, F. (2007). Refined experimental methodology for assessing the heat dissipated in cyclically loaded materials at low stress levels. Comptes Rendus Mécanique, 335, 168–174. https://doi.org/10.1016/j.crme.2007.02.004

    Article  MATH  Google Scholar 

  29. Wang, C., Blanche, A., Wagner, D., Chrysochoos, A., & Bathias, C. (2014). Dissipative and microstructural effects associated with fatigue crack initiation on an Armco iron. International Journal of Fatigue, 58, 152–157. https://doi.org/10.1016/j.ijfatigue.2013.02.009

    Article  Google Scholar 

  30. Guo, Q., Guo, X. L., Fan, J. L., Syed, R., & Wu, C. W. (2015). An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation. International Journal of Fatigue, 80, 136–144. https://doi.org/10.1016/j.ijfatigue.2015.04.016

    Article  Google Scholar 

  31. Guo, Q., & Guo, X. L. (2016). Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation. Materials & Design, 90, 248–255. https://doi.org/10.1016/j.matdes.2015.10.103

    Article  Google Scholar 

  32. Guo, Q., Zaïri, F., & Guo, X. L. (2018). An intrinsic dissipation model for high-cycle fatigue life prediction. International Journal of Mechanical Sciences, 140, 163–171. https://doi.org/10.1016/j.ijmecsci.2018.02.047

    Article  Google Scholar 

  33. Teng, Z., Wu, H., Boller, C., & Stark, P. (2020). A unified fatigue life calculation based on intrinsic thermal dissipation and microplasticity evolution. International Journal of Fatigue, 131, 105370. https://doi.org/10.1016/j.ijfatigue.2019.105370

    Article  Google Scholar 

  34. Hayabusa, K., Inaba, K., Ikeda, H., & Kishimoto, K. (2017). Estimation of fatigue limits from temperature data measured by IR thermography. Experimental Mechanics, 57, 185–194. https://doi.org/10.1007/s11340-016-0221-7

    Article  Google Scholar 

  35. Wagner, D., Ranc, N., Bathìas, C., & Paris, P. C. (2010). Fatigue crack initiation detection by an infrared thermography method. Fatigue & Fracture of Engineering Materials & Structures, 30, 12–21. https://doi.org/10.1111/j.1460-2695.2009.01410.x

    Article  Google Scholar 

  36. Yang, W., Guo, X. L., Guo, Q., & Fan, J. L. (2019). Rapid evaluation for high-cycle fatigue reliability of metallic materials through quantitative thermography methodology. International Journal of Fatigue, 124, 461–472. https://doi.org/10.1016/j.ijfatigue.2019.03.024

    Article  Google Scholar 

  37. Mareau, C., Favier, V., Weber, B., Galtier, A., & Berveiller, M. (2012). Micromechanical modeling of the interactions between the microstructure and the dissipative deformation mechanisms in steels under cyclic loading. International Journal of Plasticity, 32–33, 106–120. https://doi.org/10.1016/j.ijplas.2011.12.004

    Article  Google Scholar 

  38. Everitt, B. (1998). The Cambridge dictionary of statistics. Cambridge University Press.

    MATH  Google Scholar 

  39. Enders, F. B. (2020). Coefficient of determination. Encyclopedia Britannica, 26. https://www.britannica.com/science/coefficient-of-determination. Accessed 3 May 2021

  40. Finis, R. D., Palumbo, D., Ancona, F., & Galietti, U. (2015). Fatigue limit evaluation of various martensitic stainless steels with new robust thermographic data analysis. International Journal of Fatigue, 74, 88–96. https://doi.org/10.1016/j.ijfatigue.2014.12.010

    Article  Google Scholar 

  41. Schulz, M., & Caldwell, L. (1995). Nonuniformity correction and correctability of infrared focal plane arrays. Infrared Physics & Technology, 36, 763–777. https://doi.org/10.1016/1350-4495(94)00002-3

    Article  Google Scholar 

  42. Hu, J., Xu, Z., & Wan, Q. (2014). Non-uniformity correction of infrared focal plane array in point target surveillance systems. Infrared Physics & Technology, 66, 56–69. https://doi.org/10.1016/j.infrared.2014.05.012

    Article  Google Scholar 

  43. Yun, S. H., Park, J. H., Lee, G. L., Wang, L., & Choi, N. S. (2020). Prediction of fatigue limit in Al6061 under various stress ratios of loading mode using infrared thermography. Korean Society of Mechanical Engineers A, 44, 471–479. https://doi.org/10.3795/KSME-A.2020.44.7.471

    Article  Google Scholar 

  44. Akai, A., Shiozawa, D., & Sakagami, T. (2012). Fatigue limit evaluation for austenitic stainless steel. Journal of the Society of Materials Science Japan, 61, 953–959. https://doi.org/10.2472/jsms.61.953

    Article  Google Scholar 

  45. Fargione, G., Giudice, F., & Risitano, A. (2017). The influence of the load frequency on the high cycle fatigue behavior. Theoretical and Applied Fracture Mechanics, 88, 97–106. https://doi.org/10.1016/j.tafmec.2016.12.004

    Article  Google Scholar 

  46. Grigorescu, A. C., Hilgendorff, P. M., Zimmermann, M., Fritzen, C. P., & Christ, H. J. (2016). Cyclic deformation behavior of austenitic Cr–Ni-steels in the VHCF regime: Part I – experimental study. International Journal of Fatigue, 93, 250–260. https://doi.org/10.1016/j.ijfatigue.2016.05.005

    Article  Google Scholar 

  47. Holmes, J. W., & Shuler, S. F. (1990). Temperature rise during fatigue of fibre-reinforced ceramics. Journal of Materials Science letters, 9, 1290–1291. https://doi.org/10.1007/BF00726522

    Article  Google Scholar 

  48. Nakajima, M., Akita, M., Uematsu, Y., & Tokaji, K. (2010). Effect of strain-induced martensitic transformation on fatigue behavior of type 304 stainless steel. Procedia Engineering, 2, 323–330. https://doi.org/10.1016/j.proeng.2010.03.036

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1A2C1002193).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Hoon Park or Nak-Sam Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Lee, G., Wang, L. et al. Metal Fatigue-Limit Estimation Based on Intrinsic Dissipated Energy. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 1527–1541 (2022). https://doi.org/10.1007/s40684-022-00458-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00458-4

Keywords

Navigation