Log in

Molecular screening reveals a photoperiod responsive floral regulator in sugarcane

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

Flowering is a major factor that can decrease sugarcane productivity because it affects the quantity and quality of feedstock due to sucrose consumption from the stalk during inflorescence formation. Photoperiod is the main environmental factor involved in sugarcane floral induction, which occurs by the integration of gene regulatory networks in response to environmental and endogenous stimuli. One of the gene families involved in these regulatory networks are orthologs of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, which encodes a phloem-mobile signal that stimulates floral induction at the shoot apical meristem. This work investigates homologs of the FT gene in sugarcane, as well as determines the putative function of these genes under inductive short-day photoperiods. We conducted in silico analyses to isolate putative FT orthologs in sugarcane and examined the expression levels of these genes under different photoperiodic conditions over a 24-hour-day-cycle in contrasting cultivars with different flowering responses. Three new FT orthologs were found with high similarity to FT homologs in other species. Among three genes identified, we focused on ScFT6, which has conserved amino acid sequence domains at characteristic positions for the flowering inducer of the phosphatidylethanolamine-binding protein (PEBP) gene family. ScFT6 expression varied according to diurnal variation and demonstrated a high transcriptional level under inductive shortening-day conditions. Cultivars with distinct flowering time responses display variable expression for the ScFT6. Therefore, ScFT6 is a putative orthologous gene in relation to FT that is controlled by photoperiod and diurnal regulation in sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel DJTEJ (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25(3):605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aitken K, Berkman P, Rae A (2016) The first sugarcane genome assembly: how can we use it. Proc Aust Soc Sugar Cane Technol 38(1):193–199

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araldi R, Silva FML, Ono EO, Rodrigues JD (2010) Flowering in sugarcane. Ciência Rural 40:694–702

    Article  Google Scholar 

  • Berding N, Hurney AP (2005) Flowering and lodging, physiological-based traits affecting cane and sugar yield: what do we know of their control mechanisms and how do we manage them? Field crops research 92(2–3):261–275

    Article  Google Scholar 

  • Berding N, Pendrigh RS, Dunne V (2010) Pursuing higher efficacy for managed photoperiodic initiation of sugarcane flowering in the tropics. Proc Aust Soc Sugar Cane Technol 2010(32):234–250

    Google Scholar 

  • Bolger AM, Lohse M, Usadel BJB (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen EJN (1996) Control of inflorescence architecture in Antirrhinum. Nature 379(6568):791

    Article  CAS  PubMed  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen EJS (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275(5296):80–83

    Article  CAS  PubMed  Google Scholar 

  • Burge C, Karlin SJJOM (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268(1):78–94

    Article  CAS  PubMed  Google Scholar 

  • Coelho C, Costa Netto A, Colasanti J, Chalfun-Junior A (2013) A proposed model for the flowering signaling pathway of sugarcane under photoperiodic control. Genet Mol Res 12(2):1347–1359

    Article  CAS  PubMed  Google Scholar 

  • Coelho CP, Minow MA, Chalfun-Júnior A, Colasanti J (2014) Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis. Front Plant Sci 26(5):221

    Google Scholar 

  • Corrêa LGG, Riaño-Pachón DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz MMJPO (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS ONE 3(8):e2944

    Article  PubMed  PubMed Central  Google Scholar 

  • Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 146(1):250–264

  • Dillewijn CV (1952) Botany of sugarcane: the chronica botanica. 617

  • Glassop D, Rae AL (2019) Expression of sugarcane genes associated with perception of photoperiod and floral induction reveals cycling over a 24-hour period. Funct Plant Biol 46(4):314–327

    Article  CAS  PubMed  Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315(5813):808–810

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenham K, McClung CR (2015) Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet 16(10):598

    Article  CAS  PubMed  Google Scholar 

  • Grivet L, Arruda P (2002) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5(2):122–127

    Article  CAS  PubMed  Google Scholar 

  • Haas B, Papanicolaou A (2016) TransDecoder (find coding regions within transcripts).

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA 102(21):7748–7753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harig L, Beinecke FA, Oltmanns J, Muth J, Müller O, Rü** B, Twyman RM, Prüfer D, Noll GA (2012) Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J 72(6):908–921

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 135(2):677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho WWH, Weigel DJTPC (2014) Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26(2):552–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal D, De Souza AP, Larsen S, LeBauer DS, Miguez FE, Sparovek G, Buckeridge MS, Long SP (2017) Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat Clim Change 7(11):788–792

    Article  Google Scholar 

  • Júnior LCT, Marques MO, da Silva Neto HF, Camilotti F, Bernardi JH, Nogueira TAR (2009) Variação genotípica no florescimento, isoporização e características tecnológicas em seis cultivares de cana-de-açúcar/genotypic variation on the flower emission, pith process and technological characteristics in six sugarcane cultivars. Revista de Biologia e Ciências da Terra 9(1):12–18

    Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel DJS (1999) Activation tagging of the floral inducer FT. Science 286(5446):1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz UJP (2011) Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol 156(4):1967–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Yu X, Michaels SD (2008) Regulation of CONSTANS and FLOWERING LOCUS T expression in response to changing light quality. Plant Physiol 148(1):269–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286(5446):1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43(10):1096–1105

    Article  CAS  PubMed  Google Scholar 

  • Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135(4):767–774

    Article  CAS  PubMed  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136(20):3443–3450

    Article  CAS  PubMed  Google Scholar 

  • Lazakis CM, Coneva V, Colasanti J (2011) ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals. J Exp Botany 62(14):4833–4842

    Article  CAS  Google Scholar 

  • Lebon G, Wojnarowiez G, Holzapfel B, Fontaine F, Vaillant-Gaveau N, Clément C (2008) Sugars and flowering in the grapevine (Vitis vinifera L.). J Exp Bot 59(10):2565–2578

    Article  CAS  PubMed  Google Scholar 

  • Lin M-K, Belanger H, Lee Y-J, Varkonyi-Gasic E, Taoka K-I, Miura E, Xoconostle-Cázares B, Gendler K, Jorgensen RA, Phinney B (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19(5):1488–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling H, Wu Q, Guo J, Xu L, Que Y (2014) Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS ONE 9(5):e97469

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Gee RC, He J, Bryant SH (20115) CDD: NCBI's conserved domain database. Nucleic Acids Res 43(1):222–226

  • Marques MO, Mutton MA, Nogueira TAR, Júnior LCT, de Nogueira GA, Bernardi JH (eds) (2008) Tecnologias na agroindústria canavieira Jaboticaba. FCAV, São Paulo, p. 319

  • Mattiello L, Riaño-Pachón DM, Martins MCM, da Cruz LP, Bassi D, Marchiori PER, Ribeiro PER, Labate RV, Labate MTV CA and, Menossi M (2015) Physiological and transcriptional analyses of developmental stages along sugarcane leaf. BMC Plant Biol 15(1):300

    Article  PubMed  PubMed Central  Google Scholar 

  • Melloni MLG, Melloni MNG, Scarpari MS, Garcia JC, Landell MG, Pinto LR (2015) Flowering of sugarcane genotypes under different artificial photoperiod conditions. Am J Plant Sci 6(03):456

    Article  Google Scholar 

  • Miller TA, Muslin EH, Dorweiler JE (2008) A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta 227(6):1377–1388

    Article  CAS  PubMed  Google Scholar 

  • Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Z, Bruggemann E, Archibald R, Ananiev EV, Danilevskaya ON (2006) Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol 142(4):1523–1536

  • Neto JVS, Gallo WL (2021) Potential impacts of vinasse biogas replacing fossil oil for power generation, natural gas, and increasing sugarcane energy in Brazil. Renew Sustain Energy Rev 135:110281

    Article  Google Scholar 

  • Ospina-Zapata DA, Madrigal Y, Alzate JF, Pabón-Mora N (2020) Evolution and expression of reproductive transition regulatory genes FT/TFL1 with emphasis in selected neotropical orchids. Front Plant Sci 11:469

    Article  PubMed  PubMed Central  Google Scholar 

  • Owczarzy R, Tataurov AV, Wu Y, Manthey JA, McQuisten KA, Almabrazi HG, Pedersen KF, Lin Y, Garretson J, McEntaggart NOJN (2008) IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res 36(suppl2):W163–W169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJ, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330(6009):1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz EJD (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125(11):1979–1989

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland GJS (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288(5471):1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Shaw LM, Li C, Woods DP, Alvarez MA, Lin H, Lau MY, Chen A, Dubcovsky J (2020) Epistatic interactions between PHOTOPERIOD-1, CONSTANS 1 and CONSTANS 2 modulate the photoperiodic response in wheat. PLoS Genet 16(7):e1008812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim JS, Kubota A, Imaizumi T (2017) Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiol 173(1):5–15

    Article  CAS  PubMed  Google Scholar 

  • Shrestha R, Gomez-Ariza J, Brambilla V, Fornara F (2014) Molecular control of seasonal flowering in rice, Arabidopsis and temperate cereals. Ann Bot 114(7):1445–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Singh P, Singh J (2019) Effect of arrowing/flowering on juice quality of sugarcane. Indian J Sugarcane Technol 34(02):82–84

    Google Scholar 

  • Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66:441–464

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RP, Singh SP, Singh PRATAP, Singh SB (2006) Artificial induction of flowering in sugarcane under sub-tropical conditions—a successful approach. Sugar Tech 8(2–3):184–186

    Article  Google Scholar 

  • Steibel JP, Poletto R, Coussens PM, Rosa GJ (2009) A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data. Genomics 94(2):146–152

    Article  CAS  PubMed  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410(6832):1116

    Article  PubMed  Google Scholar 

  • Takada S, Goto K (2003) TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15(12):2856–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316(5827):1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar SJMB (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Taoka KI, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki SJN (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476(7360):332

    Article  CAS  PubMed  Google Scholar 

  • Telles GP, Braga MD, Dias Z, Tzy-Li L, Quitzau JA, Silva FRD, Meidanis J (2001) Bioinformatics of the sugarcane EST project. Genet Mol Biol 24(1–4):9–15

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22(22):4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303(5660):1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Venail J, da Silva Santos PH, Manechini JR, Alves LC, Scarpari M, Falcão T, Romanel E, Brito M, Vicentini R, Pinto L, Jackson SD (2022) Analysis of the PEBP gene family and identification of a novel FLOWERING LOCUS T orthologue in sugarcane. J Exp Bot 73(7):2035–2049

    Article  CAS  PubMed  Google Scholar 

  • Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feiljohn R, Lunn JE, Stitt M, Schmid M (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704–707

    Article  CAS  PubMed  Google Scholar 

  • Wickland DP, Hanzawa YJMP (2015) The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Mol Plant 8(7):983–997

    Article  CAS  PubMed  Google Scholar 

  • Wolabu TW, Zhang F, Niu L, Kalve S, Bhatnagar-Mathur P, Muszynski MG, Tadege M (2016) Three FLOWERING LOCUS T‐like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytol 210(3):946–959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by CNPq (The Brazilian National Council for Scientific and Technological Development grant #437647/2018-8 and #310216/2019-2) and CAPES (Brazilian federal government agency under the Ministry of Education).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Chalfun-Junior.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40626_2023_276_MOESM1_ESM.docx

Supplementary Fig. 1 Day length throughout the experiment period according to each treatment. The plants were acclimated for 20 days at greenhouse with shade netting of 50% spacing. Two light treatments were imposed on the sugarcane plants for 30 days, with a daily reduction of 1 min. Leaf samples were collected after 30 days. Supplementary material 1 (DOCX 23.5 kb)

40626_2023_276_MOESM2_ESM.docx

Supplementary Fig. 2 Conserved PEBP domain present in sugarcane FT and TFL putative orthologs: ScFT6 (a), ScTFL3 (b) and ScTFL4 (c). Query seq. indicates the length of the query sequence by the number of amino acids. Small triangles indicate the amino acid involved in conserved features/sites, such as catalytic and binding sites. Data generated from < https://www.ncbi.nlm.nih.gov/>. Supplementary material 2 (DOCX 90.6 kb)

40626_2023_276_MOESM3_ESM.docx

Supplementary Fig. 3 Fold-change estimates for the ScFT6 gene expression over 24-hours. The log2 fold-changes for four contrasts (abscissa) are presented. Interval bars indicate the 95% confidence interval. Comparisons between times of day whose confidence interval includes the value 0 (1 in fold-change scale) are not significant at α = 5%. Supplementary material 3 (DOCX 72.1 kb)

40626_2023_276_MOESM4_ESM.docx

Supplementary Fig. 4 Fold-change estimates for the ScFT6 gene expression under two contrasting photoperiod (Shortening-day—Lengthening-day). The log2 fold-changes for two contrasts (abscissa) are presented. Interval bars indicate the 95% confidence interval. Comparisons between photoperiods whose confidence interval includes the value 0 (1 in fold-change scale) are not significant at α = 5%. Supplementary material 4 (DOCX 18.1 kb)

40626_2023_276_MOESM5_ESM.docx

Supplementary Fig. 5 Mean stalk diameter, ASD, (a) and mean stalk height, MSH, (b) of cultivars RB 85-5453 (flowering) and CTC 9003 (non-flowering). The symbol (*) indicates statistical difference between means by F test at p ≤ 0.05. The vertical bars indicate the standard errors of the mean. Supplementary material 5 (DOCX 74.8 kb)

40626_2023_276_MOESM6_ESM.docx

Supplementary Fig. 6 Percentage of dead leaves (% DF, left) and leaf area (LA, right) of cultivars RB 85-5453 and CTC 9003. The symbol (*) indicates statistical difference between means by F test at p ≤ 0.05. Supplementary material 6 (DOCX 76.1 kb)

40626_2023_276_MOESM7_ESM.docx

Supplementary Fig. 7 Fold-change estimates for the ScFT6 gene expression in two sugarcane contrasting cultivars, under two contrasting photoperiod (Shortening-day—Lengthening-day). The log2 fold-changes for three contrasts (abscissa) are presented. Interval bars indicate the 95% confidence interval. Comparisons between cultivars whose confidence interval includes the value 0 (1 in fold-change scale) are not significant at α = 5%. Supplementary material 7 (DOCX 94.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linhares-Neto, M.V., Schumacher, P.V., Ribeiro, T.H.C. et al. Molecular screening reveals a photoperiod responsive floral regulator in sugarcane. Theor. Exp. Plant Physiol. 35, 199–214 (2023). https://doi.org/10.1007/s40626-023-00276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-023-00276-2

Keywords

Navigation