Log in

Abstract

International migration often results in major changes in living environments and lifestyles, and these changes may lead to the observed increases in obesity and diabetes among foreign-born people after resettling in higher-income countries. A possible mechanism linking changes in living environments to the onset of health conditions may be changes in the microbiome. Previous research has shown that unfavorable changes in the composition of the microbiome can increase disposition to diseases such as diabetes, obesity, kidney disease, and inflammatory bowel disease. We investigated the relationship between human migration and microbiome composition through a review using microbiome- and migration-related search terms in PubMed and Web of Science. We included articles examining the gut, oral, or oropharyngeal microbiome in people who migrated internationally. Nine articles met eligibility criteria. All but one examined migration from a non-Western to a Western country. Four of these found a difference in the microbiome of migrants compared with non-migrating residents of their country of birth, seven found differences in the microbiome of migrants compared with the native-born population in the country of resettlement, and five found microbiome differences associated with duration of stay in the country of resettlement. Microbiome composition varies with country of birth, age at migration, time since immigration, and country of resettlement. The results suggest that migration may lead to changes in the microbiome; thus, microbiome characteristics are a plausible pathway to examine changes in health after resettlement in a new country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

This is a review of the literature with no primary or secondary data analysis. The information collected from across articles has been made available in the Appendix.

References

  1. Bureau USC. S0502 - Selected characteristics of the foreign-born population by period of entry into the United States. In: Bureau USC, editor. American FactFinder; 2012.

  2. Goel MS, McCarthy EP, Phillips RS, Wee CC. Obesity among US immigrant subgroups by duration of residence. JAMA. 2004;292(23):2860–7. https://doi.org/10.1001/jama.292.23.2860.

    Article  CAS  PubMed  Google Scholar 

  3. Gordon-Larsen P, Harris KM, Ward DS, Popkin BM, Health NLSoA. Acculturation and overweight-related behaviors among Hispanic immigrants to the US: the National Longitudinal Study of Adolescent Health. Soc Sci Med. 2003;57(11):2023–34. https://doi.org/10.1016/s0277-9536(03)00072-8.

  4. Singh GK, Siahpush M. All-cause and cause-specific mortality of immigrants and native born in the United States. Am J Public Health. 2001;91(3):392–9. https://doi.org/10.2105/ajph.91.3.392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Argeseanu Cunningham S, Ruben JD, Narayan KM. Health of foreign-born people in the United States: a review. Health Place. 2008;14(4):623–35. https://doi.org/10.1016/j.healthplace.2007.12.002.

    Article  PubMed  Google Scholar 

  6. Osypuk TL, Diez Roux AV, Hadley C, Kandula NR. Are immigrant enclaves healthy places to live? The multi-ethnic study of atherosclerosis. Soc Sci Med. 2009;69(1):110–20. https://doi.org/10.1016/j.socscimed.2009.04.010.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Singh GK, Siahpush M. Ethnic-immigrant differentials in health behaviors, morbidity, and cause-specific mortality in the United States: an analysis of two national data bases. Hum Biol. 2002;74(1):83–109. https://doi.org/10.1353/hub.2002.0011.

    Article  PubMed  Google Scholar 

  8. Mooteri SN, Petersen F, Dagubati R, Pai RG. Duration of residence in the United States as a new risk factor for coronary artery disease (The Konkani Heart Study). Am J Cardiol. 2004;93(3):359–61. https://doi.org/10.1016/j.amjcard.2003.09.044.

    Article  PubMed  Google Scholar 

  9. Rogler LH, Cortes DE, Malgady RG. Acculturation and mental health status among Hispanics. Convergence and new directions for research. Am Psychol. 1991;46(6):585–97. https://doi.org/10.1037//0003-066x.46.6.585.

  10. Lara M, Gamboa C, Kahramanian MI, Morales LS, Bautista DE. Acculturation and Latino health in the United States: a review of the literature and its sociopolitical context. Annu Rev Public Health. 2005;26:367–97. https://doi.org/10.1146/annurev.publhealth.26.021304.144615.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Popkin BM, Udry JR. Adolescent obesity increases significantly in second and third generation U.S. immigrants: the National Longitudinal Study of Adolescent Health. J Nutr. 1998;128(4):701–6. https://doi.org/10.1093/jn/128.4.701.

  12. Akresh IR. Dietary assimilation and health among hispanic immigrants to the United States. J Health Soc Behav. 2007;48(4):404–17. https://doi.org/10.1177/002214650704800405.

    Article  PubMed  Google Scholar 

  13. Jerome NW. Nutritional anthropology. New York: Red Grave Press; 1980.

    Google Scholar 

  14. Shi L, van Meijgaard J, Simon P. The association between acculturation and recreational computer use among Latino adolescents in California. Pediatr Obes. 2012;7(4):E33–6. https://doi.org/10.1111/j.2047-6310.2012.00057.x.

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Probst JC, Harun N, Bennett KJ, Torres ME. Acculturation, physical activity, and obesity among Hispanic adolescents. Ethn Health. 2009;14(5):509–25. https://doi.org/10.1080/13557850902890209.

    Article  PubMed  Google Scholar 

  16. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3(4):213–23. https://doi.org/10.1016/j.chom.2008.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE. 2013;8(8): e71108. https://doi.org/10.1371/journal.pone.0071108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res. 2017;179:24–37. https://doi.org/10.1016/j.trsl.2016.04.007.

    Article  CAS  PubMed  Google Scholar 

  19. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79. https://doi.org/10.1186/gb-2012-13-9-r79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3. https://doi.org/10.1038/4441022a.

    Article  CAS  PubMed  Google Scholar 

  21. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14. https://doi.org/10.1126/scitranslmed.3000322.

  22. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-6.e7. https://doi.org/10.1053/j.gastro.2012.06.031.

    Article  CAS  PubMed  Google Scholar 

  23. Di Luccia B, Crescenzo R, Mazzoli A, Cigliano L, Venditti P, Walser JC, et al. Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation in a rat model of obesity. PLoS ONE. 2015;10(8): e0134893. https://doi.org/10.1371/journal.pone.0134893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16(1):35–56. https://doi.org/10.1038/s41575-018-0061-2.

    Article  CAS  PubMed  Google Scholar 

  25. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. https://doi.org/10.1126/science.1208344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haro C, Montes-Borrego M, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, et al. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J Clin Endocrinol Metab. 2016;101(1):233–42. https://doi.org/10.1210/jc.2015-3351.

    Article  CAS  PubMed  Google Scholar 

  27. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–30. https://doi.org/10.1038/ismej.2010.118.

    Article  CAS  PubMed  Google Scholar 

  28. Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013;98(1):111–20. https://doi.org/10.3945/ajcn.112.056689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in sha** gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6. https://doi.org/10.1073/pnas.1005963107.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chong CW, Ahmad AF, Lim YA, Teh CS, Yap IK, Lee SC, et al. Effect of ethnicity and socioeconomic variation to the gut microbiota composition among pre-adolescent in Malaysia. Sci Rep. 2015;5:13338. https://doi.org/10.1038/srep13338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K, et al. Gut microbiome of coexisting BaAka Pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep. 2016;14(9):2142–53. https://doi.org/10.1016/j.celrep.2016.02.013.

    Article  CAS  PubMed  Google Scholar 

  32. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, Ursell LK, et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun. 2015;6:6505. https://doi.org/10.1038/ncomms7505.

    Article  CAS  PubMed  Google Scholar 

  33. Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science. 2017;357(6353):802–6. https://doi.org/10.1126/science.aan4834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dahl WJ, Rivero Mendoza D, Lambert JM. Diet, nutrients and the microbiome. Prog Mol Biol Transl Sci. 2020;171:237–63. https://doi.org/10.1016/bs.pmbts.2020.04.006.

    Article  CAS  PubMed  Google Scholar 

  35. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80. https://doi.org/10.1038/nature09944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Costea PI, Hildebrand F, Arumugam M, Bäckhed F, Blaser MJ, Bushman FD, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3(1):8–16. https://doi.org/10.1038/s41564-017-0072-8.

    Article  CAS  PubMed  Google Scholar 

  37. Jeffery IB, O’Toole PW. Diet-microbiota interactions and their implications for healthy living. Nutrients. 2013;5(1):234–52. https://doi.org/10.3390/nu5010234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Becerra-Tomás N, Babio N, Martínez-González MÁ, Corella D, Estruch R, Ros E, et al. Replacing red meat and processed red meat for white meat, fish, legumes or eggs is associated with lower risk of incidence of metabolic syndrome. Clin Nutr. 2016;35:1442–9. https://doi.org/10.1016/j.clnu.2016.03.017.

    Article  PubMed  Google Scholar 

  39. Bellavia A, Stilling F, Wolk A. High red meat intake and all-cause cardiovascular and cancer mortality: is the risk modified by fruit and vegetable intake? Am J Clin Nutr. 2016;104:1137–43. https://doi.org/10.3945/ajcn.116.135335.

    Article  CAS  PubMed  Google Scholar 

  40. Agyemang C, van der Born BJ. Non-communicable diseases in migrants: an expert review. J Travel Med. 2019;26(2):tay107. https://doi.org/10.1093/jtm/tay107.

  41. Commodore-Mensah Y, Selvin E, Aboagye J, Turkson-Ocran RA, Li X, Himmelfarb CD, et al. Hypertension, overweight/obesity, and diabetes among immigrants in the united states: an analysis of the 2010–2016 national health interview survey. BMC Public Health. 2018;18:773. https://doi.org/10.1186/s12889-018-5683-3.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Holmboe-Ottesen G, Wandel M. Changes in dietary habits after migration and consequences for health: a focus on South Asians in Europe. Food Nutr Res. 2012;56. https://doi.org/10.3402/fnr.v56i0.18891.

  43. Wu J, Peters BA, Dominianni C, Zhang Y, Pei Z, Yang L, et al. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016;10(10):2435–46. https://doi.org/10.1038/ismej.2016.37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kato I, Vasquez A, Moyerbrailean G, Land S, Djuric Z, Sun J, et al. Nutritional correlates of human oral microbiome. J Am Coll Nutr. 2017;36(2):88–98. https://doi.org/10.1080/07315724.2016.1185386.

    Article  CAS  PubMed  Google Scholar 

  45. Corby PM, Biesbrock A, Bartizek R, Corby AL, Monteverde R, Ceschin R, et al. Treatment outcomes of dental flossing in twins: molecular analysis of the interproximal microflora. J Periodontol. 2008;79(8):1426–33. https://doi.org/10.1902/jop.2008.070585.

    Article  PubMed  Google Scholar 

  46. Bierne H, Hamon M, Cossart P. Epigenetics and bacterial infections. Cold Spring Harb Perspect Med. 2012;2(12): a010272. https://doi.org/10.1101/cshperspect.a010272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peters BA, Yi SLS, Beasley JM, Cobbs EN, Choi HS, Beggs DB, et al. US nativity and dietary acculturation impact the gut microbiome in a diverse US population. ISME J. 2020;14(7):1639–50. https://doi.org/10.1038/s41396-020-0630-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo J, Lv QJ, Ariff A, Zhang XP, Peacock CS, Song Y, et al. Western oropharyngeal and gut microbial profiles are associated with allergic conditions in Chinese immigrant children. World Allergy Organ J. 2019;12(8). https://doi.org/10.1016/j.waojou.2019.100051.

  49. Copeland JK, Chao G, Vanderhout S, Acton E, Wang PW, Benchimol EI, et al. The impact of migration on the gut metagenome of South Asian Canadians. Gut Microbes. 2021;13(1):1–29. https://doi.org/10.1080/19490976.2021.1902705.

    Article  CAS  PubMed  Google Scholar 

  50. Guo J, Zhang XP, Saiganesh A, Peacock C, Chen S, Dykes GA, et al. Linking the westernised oropharyngeal microbiome to the immune response in Chinese immigrants. Allergy Asthma Clin Immunol. 2020;16(1). https://doi.org/10.1186/s13223-020-00465-7.

  51. Hoffman KL, Hutchinson DS, Fowler J, Smith DP, Ajami NJ, Zhao H, et al. Oral microbiota reveals signs of acculturation in Mexican American women. Plos One. 2018;13(4). https://doi.org/10.1371/journal.pone.0194100.

  52. Kaplan RC, Wang Z, Usyk M, Sotres-Alvarez D, Daviglus ML, Schneiderman N, et al. Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity. Genome Biol. 2019;20(1). https://doi.org/10.1186/s13059-019-1831-z.

  53. Skurnik D, Bonnet D, Bernède-Bauduin C, Michel R, Guette C, Becker JM, et al. Characteristics of human intestinal Escherichia coli with changing environments. Environ Microbiol. 2008:2132–7.

  54. Vangay P, Johnson AJ, Ward TL, Al-Ghalith GA, Shields-Cutler RR, Hillmann BM, et al. US Immigration Westernizes the human gut microbiome. Cell. 2018;175(4):962-+. https://doi.org/10.1016/j.cell.2018.10.029.

  55. Wang Z, Usyk M, Vázquez-Baeza Y, Chen GC, Isasi CR, Williams-Nguyen JS, et al. Microbial co-occurrence complicates associations of gut microbiome with US immigration, dietary intake and obesity. Genome Biol. 2021;22(1):336. https://doi.org/10.1186/s13059-021-02559-w.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kim BR, Shin J, Guevarra R, Lee JH, Kim DW, Seol KH, et al. Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol. 2017;27(12):2089–93. https://doi.org/10.4014/jmb.1709.09027.

    Article  PubMed  Google Scholar 

  57. Finotello F, Mastrorilli E, Di Camillo B. Measuring the diversity of the human microbiota with targeted next-generation sequencing. Brief Bioinform. 2018;19(4):679–92. https://doi.org/10.1093/bib/bbw119.

    Article  PubMed  Google Scholar 

  58. Ricotta C, Podani J. On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecol Complex. 2017;31:201–5. https://doi.org/10.1016/j.ecocom.2017.07.003.

    Article  Google Scholar 

  59. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5(2):169–72. https://doi.org/10.1038/ismej.2010.133.

    Article  PubMed  Google Scholar 

  60. Gomez A, Nelson KE. The oral microbiome of children: development, disease, and implications beyond oral health. Microb Ecol. 2017;73(2):492–503. https://doi.org/10.1007/s00248-016-0854-1.

    Article  CAS  PubMed  Google Scholar 

  61. Radjabzadeh D, Boer CG, Beth SA, van der Wal P, Kiefte-De Jong JC, Jansen MAE, et al. Diversity, compositional and functional differences between gut microbiota of children and adults. Sci Rep. 2020;10(1):1040. https://doi.org/10.1038/s41598-020-57734-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thank you to Shenita R. Peterson, Public Health Informationist at the Woodruff Health Sciences Center Library, for her contribution to the search and to Erica Barton for her preliminary investigations.

Funding

This work was supported in part by the National Institutes of Health Grant R25 DK078381.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data extraction was led by NSS. The first draft of the manuscript was written by NSS, and all authors contributed to writing of the final manuscript. All authors read and approved the submitted manuscript.

Corresponding author

Correspondence to Solveig A. Cunningham.

Ethics declarations

Ethics Approval

This is a review article with no human subjects data. The IRB at Emory University has confirmed that no ethical approval is required.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 109 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shad, N.S., Shaikh, N.I. & Cunningham, S.A. Migration Spurs Changes in the Human Microbiome: a Review. J. Racial and Ethnic Health Disparities (2023). https://doi.org/10.1007/s40615-023-01813-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40615-023-01813-0

Keywords

Navigation