Log in

Global properties of an age-structured virus model with saturated antibody-immune response, multi-target cells, and general incidence rate

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

Some viruses, such as human immunodeficiency virus, can infect several types of cell populations. The age of infection can also affect the dynamics of infected cells and the production of viral particles. In this work, we study a virus model with infection age and different types of target cells that takes into account the saturation effect in antibody-immune response and a general non-linear infection rate. We construct suitable Lyapunov functionals to show that the global dynamics of the model is completely determined by two parameters: the basic reproduction number of virus and the reproductive number of antibody response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Briggs, C.J., Godfray, H.C.J.: The dynamics of insect-pathogen interactions in stage-structured populations. Am. Nat. 145(6), 855–887 (1995)

    Article  Google Scholar 

  2. Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of CD4+ T-cells. Math. Biosci. 165(1), 27–39 (2000)

    Article  Google Scholar 

  3. Djidjou Demasse, R., Ducrot, A.: An age-structured within-host model for multistrain malaria infections. SIAM J. Appl. Math. 73(1), 572–593 (2013)

    Article  MathSciNet  Google Scholar 

  4. Duan, X., Yuan, S.: Global dynamics of an age-structured virus model with saturation effects. Math. Methods Appl. Sci. 40(6), 1851–1864 (2017)

    Article  MathSciNet  Google Scholar 

  5. Duffin, R.P., Tullis, R.H.: Mathematical models of the complete course of HIV infection and AIDS. Comput. Math. Methods Med. 4(4), 215–221 (2002)

    MATH  Google Scholar 

  6. Elaiw, A.M.: Global properties of a class of HIV models. Nonlinear Anal. Real World Appl. 11(4), 2253–2263 (2010)

    Article  MathSciNet  Google Scholar 

  7. Elaiw, A.M.: Global properties of a class of virus infection models with multitarget cells. Nonlinear Dyn. 69(1), 423–435 (2012)

    Article  MathSciNet  Google Scholar 

  8. Elaiw, A.M., Azoz, S.A.: Global properties of a class of HIV infection models with Beddington–DeAngelis functional response. Math. Methods Appl. Sci. 36(4), 383–394 (2013)

    Article  MathSciNet  Google Scholar 

  9. Georgescu, P., Hsieh, Y.H.: Global stability for a virus dynamics model with nonlinear incidence of infection and removal. SIAM J. Appl. Math. 67(2), 337–353 (2006)

    Article  MathSciNet  Google Scholar 

  10. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  11. Hale, J.K., Waltman, P.: Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20(2), 388–395 (1989)

    Article  MathSciNet  Google Scholar 

  12. Li, D., Ma, W.: Asymptotic properties of a HIV-1 infection model with time delay. J. Math. Anal. Appl. 335(1), 683–691 (2007)

    Article  MathSciNet  Google Scholar 

  13. Magal, P., Thieme, H.R.: Eventual compactness for semiflows generated by nonlinear age-structured models. Commun. Pure Appl. Anal. 3(4), 695–727 (2004)

    Article  MathSciNet  Google Scholar 

  14. Nelson, P.W., Gilchrist, M.A., Coombs, D., Hyman, J.M., Perelson, A.S.: An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells. Math. Biosci. Eng. 1(2), 267–288 (2004)

    Article  MathSciNet  Google Scholar 

  15. Pawelek, K.A., Liu, S., Pahlevani, F., Rong, L.: A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data. Math. Biosci. 235(1), 98–109 (2012)

    Article  MathSciNet  Google Scholar 

  16. Rong, L., Feng, Z., Perelson, A.S.: Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy. SIAM J. Appl. Math. 67(3), 731–756 (2007)

    Article  MathSciNet  Google Scholar 

  17. Song, X., Neumann, A.U.: Global stability and periodic solution of the viral dynamics. J. Math. Anal. Appl. 329(1), 281–297 (2007)

    Article  MathSciNet  Google Scholar 

  18. Tian, X., Wang, J.: Stability analysis for viral infection model with multitarget cells, Beddington–DeAngelis functional response, and humoral immunity. Discrete Dyn. Nat. Soc. 2015, 654507 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Wang, J., Lang, J., Li, F.: Constructing Lyapunov functionals for a delayed viral infection model with multitarget cells, nonlinear incidence rate, state-dependent removal rate. J. Nonlinear Sci. Appl. 9, 524–536 (2016)

    Article  MathSciNet  Google Scholar 

  20. Wang, J., Lang, J., Zou, X.: Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission. Nonlinear Anal. Real World Appl. 34, 75–96 (2017)

    Article  MathSciNet  Google Scholar 

  21. Wang, J., Pang, J., Kuniya, T., Enatsu, Y.: Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays. Appl. Math. Comput. 241, 298–316 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Wang, J., Tian, X., Wang, X.: Stability analysis for delayed viral infection model with multitarget cells and general incidence rate. Int. J. Biomath. 9(01), 1650007 (2016)

    Article  MathSciNet  Google Scholar 

  23. Wang, S., Wu, J., Rong, L.: A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Math. Biosci. Eng. 14(3), 805–820 (2017)

    Article  MathSciNet  Google Scholar 

  24. Wang, X., Chen, Y., Liu, S., Song, X.: A class of delayed virus dynamics models with multiple target cells. Comput. Appl. Math. 32(2), 211–229 (2013)

    Article  MathSciNet  Google Scholar 

  25. Wang, X., Lou, Y., Song, X.: Age-structured within-host HIV dynamics with multiple target cells. Stud. Appl. Math. 138(1), 43–76 (2017)

    Article  MathSciNet  Google Scholar 

  26. Wasserstein-Robbins, F.: A mathematical model of HIV infection: simulating T4, T8, macrophages, antibody, and virus via specific anti-HIV response in the presence of adaptation and tropism. Bull. Math. Biol. 72(5), 1208–1253 (2010)

    Article  MathSciNet  Google Scholar 

  27. Xu, S.: Global stability of the virus dynamics model with Crowley–Martin functional response. Electron. J. Qual. Theory Differ. Equ. 2012(9), 1–10 (2012)

    Article  MathSciNet  Google Scholar 

  28. Yang, Y., Ruan, S., **ao, D.: Global stability of an age-structured virus dynamics model with Beddington–DeAngelis infection function. Math. Biosci. Eng. 12, 859–877 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This article was supported by Universidad Autónoma de Yucatán and Conacyt SNI under Grant Number 15284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel G. C. Pérez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila-Vales, E., Pérez, Á.G.C. Global properties of an age-structured virus model with saturated antibody-immune response, multi-target cells, and general incidence rate. Bol. Soc. Mat. Mex. 27, 26 (2021). https://doi.org/10.1007/s40590-021-00315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40590-021-00315-5

Keywords

Mathematics Subject Classification

Navigation