Log in

Update on the Regulation and Maintenance of Epstein-Barr Virus Latency

  • REVIEW
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

As the first identified human oncogenic virus, Epstein-Barr virus (EBV) is widely circulating in humans. EBV presents mainly in latent state in tumors, and the maintenance of latency is an outcome of the virus-host interaction. The understanding of the viral latency will provide insight into the pathogenesis and therapeutics of EBV-associated diseases.

Recent Findings

Recent studies have found that EBV latency differs in the 3D chromatin conformation of the genome according to its type, and that this difference affects gene expression. In addition, EBV latency is also regulated by many other factors, especially the discovery of epigenetic and immune regulation provides new ideas for EBV latency maintenance.

Summary

Here, we focus on the characteristics and maintenance of EBV latency, as well as the effect of viral latent infection on diseases, summarizing recent progress in the regulation EBV latency. The pathogenesis of EBV-related diseases is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ambinder RF, **an RR. Sir Michael Anthony Epstein (1921–2024). Science (New York, NY). 2024;384(6693):274. https://doi.org/10.1126/science.adp2961.

    Article  CAS  Google Scholar 

  2. Yu H, Robertson ES. Epstein-Barr Virus History and Pathogenesis Viruses. 2023;15(3):714. https://doi.org/10.3390/v15030714.

    Article  CAS  PubMed  Google Scholar 

  3. Crawford DH. Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci. 2001;356(1408):461–73. https://doi.org/10.1098/rstb.2000.0783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wong Y, Meehan MT, Burrows SR, Doolan DL, Miles JJ. Estimating the global burden of Epstein-Barr virus-related cancers. J Cancer Res Clin Oncol. 2022;148(1):31–46. https://doi.org/10.1007/s00432-021-03824-y.

    Article  PubMed  Google Scholar 

  5. Perri F, Sabbatino F, Ottaiano A, Fusco R, Caraglia M, Cascella M, et al. Impact of Epstein Barr Virus Infection on Treatment Opportunities in Patients with Nasopharyngeal Cancer. Cancers. 2023;15(5):1626. https://doi.org/10.3390/cancers15051626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jangra S, Yuen K-S, Botelho MG, ** D-Y. Epstein-Barr Virus and Innate Immunity: Friends or Foes? Microorganisms. 2019;7(6):183. https://doi.org/10.3390/microorganisms7060183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kanda T. EBV-Encoded Latent Genes. Adv Exp Med Biol. 2018;1045:377–94. https://doi.org/10.1007/978-981-10-7230-7_17.

    Article  CAS  PubMed  Google Scholar 

  8. Yates J, Warren N, Reisman D, Sugden B. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A. 1984;81(12):3806–10. https://doi.org/10.1073/pnas.81.12.3806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mei Y, Messick TE, Dheekollu J, Kim HJ, Molugu S, Muñoz LJC, et al. Cryo-EM Structure and Functional Studies of EBNA1 Binding to the Family of Repeats and Dyad Symmetry Elements of Epstein-Barr Virus oriP. J Virol. 2022;96(17):e0094922. https://doi.org/10.1128/jvi.00949-22.

    Article  CAS  PubMed  Google Scholar 

  10. Norseen J, Thomae A, Sridharan V, Aiyar A, Schepers A, Lieberman PM. RNA-dependent recruitment of the origin recognition complex. EMBO J. 2008;27(22):3024–35. https://doi.org/10.1038/emboj.2008.221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lieberman PM. Chromatin Structure of Epstein-Barr Virus Latent Episomes. Curr Top Microbiol Immunol. 2015;390(Pt 1):71–102. https://doi.org/10.1007/978-3-319-22822-8_5.

    Article  CAS  PubMed  Google Scholar 

  12. Jenkins PJ, Binné UK, Farrell PJ. Histone acetylation and reactivation of Epstein-Barr virus from latency. J Virol. 2000;74(2):710–20. https://doi.org/10.1128/jvi.74.2.710-720.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khanna R, Burrows SR. Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu Rev Microbiol. 2000;54:19–48. https://doi.org/10.1146/annurev.micro.54.1.19.

    Article  CAS  PubMed  Google Scholar 

  14. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016;15(9):2038–49. https://doi.org/10.1016/j.celrep.2016.04.085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morgan SM, Tanizawa H, Caruso LB, Hulse M, Kossenkov A, Madzo J, et al. The three-dimensional structure of Epstein-Barr virus genome varies by latency type and is regulated by PARP1 enzymatic activity. Nat Commun. 2022;13(1):187. Recent studies have found that PARP regulates EBV genome structure and gene expression.

  16. Maestri D, Napoletani G, Kossenkov A, Preston-Alp S, Caruso LB, Tempera I. The three-dimensional structure of the EBV genome plays a crucial role in regulating viral gene expression in EBVaGC. Nucleic Acids Res. 2023;51(22):12092–110. https://doi.org/10.1093/nar/gkad936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang L, Laing J, Yan B, Zhou H, Ke L, Wang C, et al. Epstein-Barr Virus Episome Physically Interacts with Active Regions of the Host Genome in Lymphoblastoid Cells. J Virol. 2020;94(24). https://doi.org/10.1128/jvi.01390-20.

  18. Kim KD, Tanizawa H, De Leo A, Vladimirova O, Kossenkov A, Lu F, et al. Epigenetic specifications of host chromosome docking sites for latent Epstein-Barr virus. Nat Commun. 2020;11(1):877. https://doi.org/10.1038/s41467-019-14152-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Du S, Zhu C, Wang C, Yu N, Lin Z, et al. STUB1 is targeted by the SUMO-interacting motif of EBNA1 to maintain Epstein-Barr Virus latency. PLoS Pathog. 2020;16(3):e1008447. https://doi.org/10.1371/journal.ppat.1008447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holowaty MN, Sheng Y, Nguyen T, Arrowsmith C, Frappier L. Protein interaction domains of the ubiquitin-specific protease, USP7/HAUSP. J Biol Chem. 2003;278(48):47753–61. https://doi.org/10.1074/jbc.M307200200.

    Article  CAS  PubMed  Google Scholar 

  21. **n S, Du S, Liu L, **e Y, Zuo L, Yang J, et al. Epstein-Barr Virus Nuclear Antigen 1 Recruits Cyclophilin A to Facilitate the Replication of Viral DNA Genome. Front Microbiol. 2019;10:2879. https://doi.org/10.3389/fmicb.2019.02879.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dheekollu J, Wiedmer A, Ayyanathan K, Deakyne JS, Messick TE, Lieberman PM. Cell-cycle-dependent EBNA1-DNA crosslinking promotes replication termination at oriP and viral episome maintenance. Cell. 2021;184(3):643-54.e13. https://doi.org/10.1016/j.cell.2020.12.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu CD, Lee HL, Peng CW. B Cell-Specific Transcription Activator PAX5 Recruits p300 To Support EBNA1-Driven Transcription. J Virol. 2020;94(7). https://doi.org/10.1128/jvi.02028-19.

  24. Ding W, Wang C, Narita Y, Wang H, Leong MML, Huang A, et al. The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines. J Virol. 2022;96(18):e0073922. https://doi.org/10.1128/jvi.00739-22.

    Article  CAS  PubMed  Google Scholar 

  25. Lupey-Green LN, Caruso LB, Madzo J, Martin KA, Tan Y, Hulse M, et al. PARP1 Stabilizes CTCF Binding and Chromatin Structure To Maintain Epstein-Barr Virus Latency Type. J Virol. 2018;92(18). https://doi.org/10.1128/jvi.00755-18.

  26. Lupey-Green LN, Moquin SA, Martin KA, McDevitt SM, Hulse M, Caruso LB, et al. PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter. Virology. 2017;507:220–30. https://doi.org/10.1016/j.virol.2017.04.006.

    Article  CAS  PubMed  Google Scholar 

  27. Guo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, et al. MYC Controls the Epstein-Barr Virus Lytic Switch. Mol Cell. 2020;78(4):653-69.e8. https://doi.org/10.1016/j.molcel.2020.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li S, Yang L, Li Y, Yue W, **n S, Li J, et al. Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling. Microbiol Spectr. 2023;11(2):e0123722. https://doi.org/10.1128/spectrum.01237-22.

    Article  CAS  PubMed  Google Scholar 

  29. Miller CL, Burkhardt AL, Lee JH, Stealey B, Longnecker R, Bolen JB, et al. Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity. 1995;2(2):155–66. https://doi.org/10.1016/s1074-7613(95)80040-9.

    Article  CAS  PubMed  Google Scholar 

  30. Khasnis S, Veenstra H, McClellan MJ, Ojeniyi O, Wood CD, West MJ. Regulation of B cell receptor signalling by Epstein-Barr virus nuclear antigens. The Biochemical journal. 2022;479(23):2395–417. Recent studies have found that EBNA2 and 3 inhibit latency to lysis by inhibiting BCR pathway genes.

  31. Zhang L, Wang R, **e Z. The roles of DNA methylation on the promotor of the Epstein-Barr virus (EBV) gene and the genome in patients with EBV-associated diseases. Appl Microbiol Biotechnol. 2022;106(12):4413–26. https://doi.org/10.1007/s00253-022-12029-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li J, Liu X, Liu M, Che K, Luo B. Methylation and expression of Epstein-Barr virus latent membrane protein 1, 2A and 2B in EBV-associated gastric carcinomas and cell lines. Dig Liver Dis. 2016;48(6):673–80. https://doi.org/10.1016/j.dld.2016.02.017.

    Article  CAS  PubMed  Google Scholar 

  33. Ho JWY, Li L, Wong KY, Srivastava G, Tao Q. Comprehensive Profiling of EBV Gene Expression and Promoter Methylation Reveals Latency II Viral Infection and Sporadic Abortive Lytic Activation in Peripheral T-Cell Lymphomas. Viruses. 2023;15(2). Recent studies have found differences in the methylation level of the type II latency promoter.

  34. Weber E, Buzovetsky O, Heston L, Yu KP, Knecht KM, El-Guindy A, et al. A Noncanonical Basic Motif of Epstein-Barr Virus ZEBRA Protein Facilitates Recognition of Methylated DNA, High-Affinity DNA Binding, and Lytic Activation. J Virol. 2019;93(14). https://doi.org/10.1128/jvi.00724-19.

  35. Bernaudat F, Gustems M, Günther J, Oliva MF, Buschle A, Göbel C, et al. Structural basis of DNA methylation-dependent site selectivity of the Epstein-Barr virus lytic switch protein ZEBRA/Zta/BZLF1. Nucleic Acids Res. 2022;50(1):490–511. https://doi.org/10.1093/nar/gkab1183.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Jiang C, Trudeau SJ, Narita Y, Zhao B, Teng M, et al. Histone Loaders CAF1 and HIRA Restrict Epstein-Barr Virus B-Cell Lytic Reactivation. mBio. 2020;11(5). https://doi.org/10.1128/mBio.01063-20.

  37. Xu H, Li X, Rousseau BA, Akinyemi IA, Frey TR, Zhou K, et al. IFI16 Partners with KAP1 to Maintain Epstein-Barr Virus Latency. J Virol. 2022;96(17):e0102822. https://doi.org/10.1128/jvi.01028-22.

    Article  CAS  PubMed  Google Scholar 

  38. De La Cruz-Herrera CF, Tatham MH, Siddiqi UZ, Shire K, Marcon E, Greenblatt JF, et al. Changes in SUMO-modified proteins in Epstein-Barr virus infection identifies reciprocal regulation of TRIM24/28/33 complexes and the lytic switch BZLF1. PLoS Pathog. 2023;19(7):e1011477. Recent studies have shown that SUMO1 inhibits BZLF1 expression.

  39. Ward BJH, Prasai K, Schaal DL, Wang J, Scott RS. A distinct isoform of lymphoid enhancer binding factor 1 (LEF1) epigenetically restricts EBV reactivation to maintain viral latency. PLoS Pathog. 2023;19(12):e1011873. https://doi.org/10.1371/journal.ppat.1011873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Albanese M, Tagawa T, Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front Microbiol. 2022;13:955603. https://doi.org/10.3389/fmicb.2022.955603.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Westhoff Smith D, Chakravorty A, Hayes M, Hammerschmidt W, Sugden B. The Epstein-Barr Virus Oncogene EBNA1 Suppresses Natural Killer Cell Responses and Apoptosis Early after Infection of Peripheral B Cells. mBio. 2021;12(6):e0224321. https://doi.org/10.1128/mBio.02243-21.

  42. Song H, Zhang Y, Liu J, Liu W, Luo B. Activation of DNA methyltransferase 3a by Epstein-Barr nuclear antigen 1 in gastric carcinoma. Dig Liver Dis. 2022;54(7):973–83. https://doi.org/10.1016/j.dld.2021.06.004.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang W, Li Y, **n S, Yang L, Jiang M, **n Y, et al. The emerging roles of IFIT3 in antiviral innate immunity and cellular biology. J Med Virol. 2023;95(1):e28259. https://doi.org/10.1002/jmv.28259.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang W, Jiang M, Liao X, Li Y, **n S, Yang L, et al. IFIT3 inhibits Epstein-Barr virus reactivation via upregulating innate immunity. J Med Virol. 2023;95(11):e29237. Recent studies have found that the innate immune molecule IFIT3 maintains EBV latency.

  45. Xu Y, **ong J, Sun X, Gao H. Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Acta pharmaceutica Sinica B. 2022;12(12):4327–47. https://doi.org/10.1016/j.apsb.2022.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abou Harb M, Meckes DG Jr, Sun L. Epstein-Barr virus LMP1 enhances levels of large extracellular vesicle-associated PD-L1. J Virol. 2023;97(10):e0021923. https://doi.org/10.1128/jvi.00219-23.

    Article  CAS  PubMed  Google Scholar 

  47. Huo S, Luo Y, Deng R, Liu X, Wang J, Wang L, et al. EBV-EBNA1 constructs an immunosuppressive microenvironment for nasopharyngeal carcinoma by promoting the chemoattraction of Treg cells. J Immunother Cancer. 2020;8(2). https://doi.org/10.1136/jitc-2020-001588.

  48. Wang WT, Yang Y, Zhang Y, Le YN, Wu YL, Liu YY, et al. EBV-microRNAs as Potential Biomarkers in EBV-related Fever: A Narrative Review. Curr Mol Med. 2024;24(1):2–13. https://doi.org/10.2174/1566524023666221118122005.

    Article  CAS  PubMed  Google Scholar 

  49. Humme S, Reisbach G, Feederle R, Delecluse HJ, Bousset K, Hammerschmidt W, et al. The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci U S A. 2003;100(19):10989–94. https://doi.org/10.1073/pnas.1832776100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang J, Sommermann T, Li X, Gieselmann L, de la Rosa K, Stecklum M, et al. LMP1 and EBNA2 constitute a minimal set of EBV genes for transformation of human B cells. Front Immunol. 2023;14:1331730. https://doi.org/10.3389/fimmu.2023.1331730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sugimoto A, Watanabe T, Matsuoka K, Okuno Y, Yanagi Y, Narita Y, et al. Growth Transformation of B Cells by Epstein-Barr Virus Requires IMPDH2 Induction and Nucleolar Hypertrophy. Microbiol Spectr. 2023;11(4):e0044023. https://doi.org/10.1128/spectrum.00440-23.

    Article  CAS  PubMed  Google Scholar 

  52. **n S, Liu L, Li Y, Yang J, Zuo L, Cao P, et al. Cyclophilin A binds to AKT1 and facilitates the tumorigenicity of Epstein-Barr virus by mediating the activation of AKT/mTOR/NF-κB positive feedback loop. Virol Sin. 2022;37(6):913–21. https://doi.org/10.1016/j.virs.2022.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li JSZ, Abbasi A, Kim DH, Lippman SM, Alexandrov LB, Cleveland DW. Chromosomal fragile site breakage by EBV-encoded EBNA1 at clustered repeats. Nature. 2023;616(7957):504–9. Recent studies have found that chromatin breakage caused by EBNA1 enrichment is associated with cancer development.

  54. Mrozek-Gorska P, Buschle A, Pich D, Schwarzmayr T, Fechtner R, Scialdone A, et al. Epstein-Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc Natl Acad Sci U S A. 2019;116(32):16046–55. https://doi.org/10.1073/pnas.1901314116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang J, Jia L, Liu T, Yip YL, Tang WC, Lin W, et al. mTORC2-mediated PDHE1α nuclear translocation links EBV-LMP1 reprogrammed glucose metabolism to cancer metastasis in nasopharyngeal carcinoma. Oncogene. 2019;38(24):4669–84. https://doi.org/10.1038/s41388-019-0749-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lo AK, Lung RW, Dawson CW, Young LS, Ko CW, Yeung WW, et al. Activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated lipogenesis by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma. J Pathol. 2018;246(2):180–90. https://doi.org/10.1002/path.5130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang LW, Wang Z, Ersing I, Nobre L, Guo R, Jiang S, et al. Epstein-Barr virus subverts mevalonate and fatty acid pathways to promote infected B-cell proliferation and survival. PLoS Pathog. 2019;15(9):e1008030. https://doi.org/10.1371/journal.ppat.1008030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Farrell PJ. EBV and MS: The evidence is growing stronger. Cell. 2023;186(26):5675–6. https://doi.org/10.1016/j.cell.2023.11.023.

    Article  CAS  PubMed  Google Scholar 

  59. Banko A, Cirkovic A, Jeremic I, Basaric M, Grk M, Miskovic R, et al. Uncovering the Role of Epstein-Barr Virus Infection Markers for Remission in Rheumatoid Arthritis. Biomedicines. 2023;11(9). https://doi.org/10.3390/biomedicines11092375.

  60. Afrasiabi A, Keane JT, Ong LTC, Alinejad-Rokny H, Fewings NL, Booth DR, et al. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in develo** Systemic Lupus Erythematosus. J Autoimmun. 2022;127:102781. https://doi.org/10.1016/j.jaut.2021.102781.

    Article  CAS  PubMed  Google Scholar 

  61. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science (New York, NY). 2022;375(6578):296–301. https://doi.org/10.1126/science.abj8222.

    Article  CAS  Google Scholar 

  62. Gottlieb A, Pham HPT, Saltarrelli JG, Lindsey JW. Expanded T lymphocytes in the cerebrospinal fluid of multiple sclerosis patients are specific for Epstein-Barr-virus-infected B cells. Proc Natl Acad Sci U S A. 2024;121(3):e2315857121. https://doi.org/10.1073/pnas.2315857121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lanz TV, Brewer RC, Ho PP, Moon JS, Jude KM, Fernandez D, et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature. 2022;603(7900):321–7. https://doi.org/10.1038/s41586-022-04432-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vietzen H, Berger SM, Kühner LM, Furlano PL, Bsteh G, Berger T, et al. Ineffective control of Epstein-Barr-virus-induced autoimmunity increases the risk for multiple sclerosis. Cell. 2023;186(26):5705-18.e13. https://doi.org/10.1016/j.cell.2023.11.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (82272981).

Author information

Authors and Affiliations

Authors

Contributions

Mengdi Chen prepared the figure and tables and drafted the manuscript. Yanling Li, Qingshuang Qin and Li Yang revised the manuscript. Mingjuan Jiang, Yujie **n, Huirong Yan and Xuefei Liao collected the related references and participated in discussion. Jianhong Lu designed this review and revised this review. All authors contributed to this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianhong Lu.

Ethics declarations

Ethics

Not applicable.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by the author.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Viral Latency

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Li, Y., Qin, Q. et al. Update on the Regulation and Maintenance of Epstein-Barr Virus Latency. Curr Clin Micro Rpt (2024). https://doi.org/10.1007/s40588-024-00230-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40588-024-00230-z

Keywords

Navigation