Log in

Molecular Mechanisms of Severe Diseases Caused by Epstein-Barr Virus Infection

  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Epstein-Barr virus (EBV) is a ubiquitous virus that infects > 90% of individuals. EBV has been linked to severe conditions such as chronic active EBV disease (CAEBV) and hemophagocytic lymphohistiocytosis (HLH), which are related to the proliferation of EBV-infected T or natural killer (NK) cells. CAEBV and EBV-HLH are life-threatening illnesses, and treatment strategies for these diseases have not been fully established. This review focuses on the clinical aspects and pathogenesis of CAEBV and EBV-HLH.

Recent Findings

In patients with CAEBV, somatic driver mutations, including DDX3X and other malignancy-related genes, are frequently observed in EBV-infected T/NK cells. Therefore, CAEBV lymphomagenesis may be related to the serial acquisition of somatic mutations in T/NK cells. Furthermore, intragenic deletions in the EBV genes, which are related to lytic infections, are frequently observed in CAEBV.

EBV can trigger HLH in healthy individuals, and various EBV-susceptible primary immunodeficiencies have been discovered. In EBV-HLH, cytotoxic T cells and macrophages become activated and secrete excessive amounts of cytokines, which is known as a “cytokine storm.” Abnormally high expression levels of active markers were observed in macrophages and CD8 + T cells at the single-cell level.

Summary

Accumulating evidence suggests that systemic inflammation, accompanied by clonal proliferation of EBV-infected T or NK cells, is involved in the pathogenesis of CAEBV and EBV-HLH. Understanding the disease pathogenesis is important for the development of new treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gares V, Panico L, Castagne R, Delpierre C, Kelly-Irving M. The role of the early social environment on Epstein Barr virus infection: a prospective observational design using the Millennium Cohort Study. Epidemiol Infect. 2017;145:3405–12.

    Article  CAS  PubMed  Google Scholar 

  2. Dunmire SK, Hogquist KA, Balfour HH. Infectious mononucleosis. Curr Top Microbiol Immunol. 2015;390:211–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Luzuriaga K, Sullivan JL. Infectious mononucleosis. N Engl J Med. 2010;362:1993–2000.

    Article  CAS  PubMed  Google Scholar 

  4. Tanner J, Weis J, Fearon D, Whang Y, Kieff E. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, cap**, and endocytosis. Cell. 1987;50:203–13.

    Article  CAS  PubMed  Google Scholar 

  5. Haan KM, Kwok WW, Longnecker R, Speck P. Epstein-Barr virus entry utilizing HLA-DP or HLA-DQ as a coreceptor. J Virol. 2000;74:2451–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Q, Bu W, Gabriel E, et al. HLA-DQ β1 alleles associated with Epstein-Barr virus (EBV) infectivity and EBV gp42 binding to cells. JCI Insight. 2017;2:e85687.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Correia S, Bridges R, Wegner F, et al. Sequence variation of Epstein-Barr virus: viral types, geography, codon usage, and diseases. J Virol. 2018;92:e01132.

  8. Coleman CB, Lang J, Sweet LA, et al. Epstein-Barr virus type 2 infects T cells and induces B cell lymphomagenesis in humanized mice. J Virol. 2018;92:e00813.

  9. Coleman CB, Wohlford EM, Smith NA, et al. Epstein-Barr virus type 2 latently infects T cells, inducing an atypical activation characterized by expression of lymphotactic cytokines. J Virol. 2015;89:2301–12.

    Article  PubMed  Google Scholar 

  10. Torii Y, Kawada JI, Murata T, Yoshiyama H, Kimura H, Ito Y. Epstein-Barr virus infection-induced inflammasome activation in human monocytes. PLoS ONE. 2017;12:e0175053.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pisano G, Roy A, Ahmed Ansari M, Kumar B, Chikoti L, Chandran B. Interferon-γ-inducible protein 16 (IFI16) is required for the maintenance of Epstein-Barr virus latency. Virol J. 2017;14:221.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chiang JJ, Sparrer KMJ, van Gent M, et al. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat Immunol. 2018;19:53–62.

    Article  CAS  PubMed  Google Scholar 

  13. • Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: biology and clinical disease. Cell. 2022;185:3652–70. A recent review highlighting EBV viology and immunology. Neoplastic and autoimmune diseaese associated with EBV infection are also discussed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tangye SG, Palendira U, Edwards ES. Human immunity against EBV-lessons from the clinic. J Exp Med. 2017;214:269–83.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Balfour HH Jr, Odumade OA, Schmeling DO, et al. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis. 2013;207:80–8.

    Article  CAS  PubMed  Google Scholar 

  16. Taylor GS, Long HM, Brooks JM, Rickinson AB, Hislop AD. The immunology of Epstein-Barr virus-induced disease. Annu Rev Immunol. 2015;33:787–821.

    Article  CAS  PubMed  Google Scholar 

  17. Long HM, Chagoury OL, Leese AM, et al. MHC II tetramers visualize human CD4+ T cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J Exp Med. 2013;210:933–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen JI, Kimura H, Nakamura S, Ko YH, Jaffe ES. Epstein-Barr virus-associated lymphoproliferative disease in non-immunocompromised hosts: a status report and summary of an international meeting, 8–9 September 2008. Ann Oncol: Off J Eur Soc Med Oncol. 2009;20:1472–82.

    Article  CAS  Google Scholar 

  19. Kimura H, Cohen JI. Chronic active Epstein-Barr virus disease. Front Immunol. 2017;8:1867.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bollard CM, Cohen JI. How I treat T-cell chronic active Epstein-Barr virus disease. Blood. 2018;131:2899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yonese I, Sakashita C, Imadome KI, et al. Nationwide survey of systemic chronic active EBV infection in Japan in accordance with the new WHO classification. Blood Adv. 2020;4:2918–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kimura H, Morishima T, Kanegane H, et al. Prognostic factors for chronic active Epstein-Barr virus infection. J Infect Dis. 2003;187:527–33.

    Article  PubMed  Google Scholar 

  23. Straus SE. The chronic mononucleosis syndrome. J Infect Dis. 1988;157:405–12.

    Article  CAS  PubMed  Google Scholar 

  24. Kimura H, Hoshino Y, Kanegane H, et al. Clinical and virologic characteristics of chronic active Epstein-Barr virus infection. Blood. 2001;98:280–6.

    Article  CAS  PubMed  Google Scholar 

  25. Ito Y, Suzuki M, Kawada J, Kimura H. Diagnostic values for the viral load in peripheral blood mononuclear cells of patients with chronic active Epstein-Barr virus disease. J Infect Chemother. 2016;22:268–71.

    Article  PubMed  Google Scholar 

  26. Kawada JI, Kamiya Y, Sawada A, et al. Viral DNA loads in various blood components of patients with Epstein-Barr virus-positive T-cell/natural killer cell lymphoproliferative diseases. J Infect Dis. 2019;220:1307–11.

    Article  CAS  PubMed  Google Scholar 

  27. Kimura H, Hoshino Y, Hara S, et al. Differences between T cell-type and natural killer cell-type chronic active Epstein-Barr virus infection. J Infect Dis. 2005;191:531–9.

    Article  CAS  PubMed  Google Scholar 

  28. Arai A. Advances in the study of chronic active Epstein-Barr virus infection: clinical features under the 2016 WHO Classification and Mechanisms of Development. Front Pediatr. 2019;7:14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kimura H, Ito Y, Kawabe S, et al. EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: prospective analysis of 108 cases. Blood. 2012;119:673–86.

    Article  CAS  PubMed  Google Scholar 

  30. Tabiasco J, Vercellone A, Meggetto F, Hudrisier D, Brousset P, Fournié JJ. Acquisition of viral receptor by NK cells through immunological synapse. J Immunol. 2003;170:5993–8.

    Article  CAS  PubMed  Google Scholar 

  31. Anagnostopoulos I, Hummel M, Kreschel C, Stein H. Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood. 1995;85:744–50.

    Article  CAS  PubMed  Google Scholar 

  32. •• Okuno Y, Murata T, Sato Y, et al. Defective Epstein-Barr virus in chronic active infection and haematological malignancy. Nat Microbiol. 2019;4:404–13. A comprehensive genetic analysis showing driver mutations and EBV deletions in pateints with CAEBV.

    Article  CAS  PubMed  Google Scholar 

  33. Kaye KM, Izumi KM, Kieff E. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci USA. 1993;90:9150–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gregory CD, Dive C, Henderson S, et al. Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature. 1991;349:612–4.

    Article  CAS  PubMed  Google Scholar 

  35. Kimura H. EBV in T-/NK-cell tumorigenesis. Adv Exp Med Biol. 2018;1045:459–75.

    Article  CAS  PubMed  Google Scholar 

  36. Iwata S, Yano S, Ito Y, et al. Bortezomib induces apoptosis in T lymphoma cells and natural killer lymphoma cells independent of Epstein-Barr virus infection. Int J Cancer. 2011;129:2263–73.

    Article  CAS  PubMed  Google Scholar 

  37. Kawada J, Ito Y, Iwata S, et al. mTOR inhibitors induce cell-cycle arrest and inhibit tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells. Clin Cancer Res. 2014;20:5412–22.

    Article  CAS  PubMed  Google Scholar 

  38. Ando S, Kawada JI, Watanabe T, et al. Tofacitinib induces G1 cell-cycle arrest and inhibits tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells. Oncotarget. 2016;7:76793–805.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Onozawa E, Shibayama H, Takada H, et al. STAT3 is constitutively activated in chronic active Epstein-Barr virus infection and can be a therapeutic target. Oncotarget. 2018;9:31077–89.

    Article  PubMed  Google Scholar 

  40. Takada H, Imadome KI, Shibayama H, et al. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells. PLoS ONE. 2017;12:e0174136.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Suzuki M, Takeda T, Nakagawa H, et al. The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Front Microbiol. 2015;6:280.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Song Y, Wang J, Wang Y, Wang Z. Ruxolitinib in patients with chronic active Epstein-Barr virus infection: a retrospective, single-center study. Front Pharmacol. 2021;12:710400.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jiang L, Gu ZH, Yan ZX, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 2015;47:1061–6.

    Article  CAS  PubMed  Google Scholar 

  44. Peng RJ, Han BW, Cai QQ, et al. Genomic and transcriptomic landscapes of Epstein-Barr virus in extranodal natural killer T-cell lymphoma. Leukemia. 2019;33:1451–62.

    Article  PubMed  Google Scholar 

  45. Iizasa H, Wulff BE, Alla NR, et al. Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem. 2010;285:33358–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin X, Tsai MH, Shumilov A, et al. The Epstein-Barr virus BART miRNA cluster of the M81 strain modulates multiple functions in primary B cells. PLoS Pathog. 2015;11:e1005344.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Venturini C, Houldcroft CJ, Lazareva A, et al. Epstein-Barr virus (EBV) deletions as biomarkers of response to treatment of chronic active EBV. Br J Haematol. 2021;195:249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gotoh K, Ito Y, Shibata-Watanabe Y, et al. Clinical and virological characteristics of 15 patients with chronic active Epstein-Barr virus infection treated with hematopoietic stem cell transplantation. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2008;46:1525–34.

    Article  CAS  Google Scholar 

  49. Sawada A, Inoue M, Kawa K. How we treat chronic active Epstein-Barr virus infection. Int J Hematol. 2017;105:406–18.

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto M, Sato M, Onishi Y, et al. Registry data analysis of hematopoietic stem cell transplantation on systemic chronic active Epstein-Barr virus infection patients in Japan. Am J Hematol. 2022;97:780–90.

    Article  CAS  PubMed  Google Scholar 

  51. Jordan MB, Allen CE, Greenberg J, et al. Challenges in the diagnosis of hemophagocytic lymphohistiocytosis: recommendations from the North American Consortium for Histiocytosis (NACHO). Pediatr Blood Cancer. 2019;66:e27929.

    Article  PubMed  PubMed Central  Google Scholar 

  52. • El-Mallawany NK, Curry CV, Allen CE. Haemophagocytic lymphohistiocytosis and Epstein-Barr virus: a complex relationship with diverse origins, expression and outcomes. Br J Haematol. 2022;196:31–44. A recent review highlighting the association between EBV and familial HLH. An algorithmic approach to patiennts with EBV-HLH is provided.

    Article  PubMed  Google Scholar 

  53. Imashuku S. Treatment of Epstein-Barr virus-related hemophagocytic lymphohistiocytosis (EBV-HLH); update 2010. J Pediatr Hematol Oncol. 2011;33:35–9.

    Article  CAS  PubMed  Google Scholar 

  54. Coffey AM, Lewis A, Marcogliese AN, et al. A clinicopathologic study of the spectrum of systemic forms of EBV-associated T-cell lymphoproliferative disorders of childhood: a single tertiary care pediatric institution experience in North America. Pediatr Blood Cancer. 2019;66:e27798.

    Article  PubMed  Google Scholar 

  55. Shamriz O, Kumar D, Shim J, et al. T cell-Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (HLH) occurs in non-Asians and Is associated with a T cell activation state that is comparable to primary HLH. J Clin Immunol. 2021;41:1582–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Henter JI, Horne A, Aricó M, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–31.

    Article  PubMed  Google Scholar 

  57. Kawada J, Kimura H, Shibata Y, et al. Evaluation of apoptosis in Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis. J Med Virol. 2006;78:400–7.

    Article  CAS  PubMed  Google Scholar 

  58. Kogawa K, Sato H, Asano T, et al. Prognostic factors of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in children: report of the Japan Histiocytosis Study Group. Pediatr Blood Cancer. 2014;61:1257–62.

    Article  CAS  PubMed  Google Scholar 

  59. Yanagisawa R, Nakazawa Y, Matsuda K, et al. Outcomes in children with hemophagocytic lymphohistiocytosis treated using HLH-2004 protocol in Japan. Int J Hematol. 2019;109:206–13.

    Article  CAS  PubMed  Google Scholar 

  60. Purtilo DT, Cassel CK, Yang JP, Harper R. X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet (London, England). 1975;1:935–40.

    Article  CAS  PubMed  Google Scholar 

  61. • Tangye SG, Latour S. Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood. 2020;135:644–55. A recent review highlighting human inborn errors of immunity ersulting in severe EBV-induced diseases.

    Article  PubMed  Google Scholar 

  62. Marsh RA, Madden L, Kitchen BJ, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. 2010;116:1079–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Filipovich AH, Zhang K, Snow AL, Marsh RA. X-linked lymphoproliferative syndromes: brothers or distant cousins? Blood. 2010;116:3398–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gopaal N, Sharma JN, Agrawal V, Lora SS, Jadoun LS. Chediak-Higashi syndrome with Epstein-Barr virus triggered hemophagocytic lymphohistiocytosis: a case report. Cureus. 2020;12:e11467.

    PubMed  PubMed Central  Google Scholar 

  65. Zondag TCE, Torralba-Raga L, Van Laar JAM, et al. Novel RAB27A Variant Associated with late-onset hemophagocytic lymphohistiocytosis alters effector protein binding. J Clin Immunol. 2022;42:1685–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Enders A, Zieger B, Schwarz K, et al. Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood. 2006;108:81–7.

    Article  CAS  PubMed  Google Scholar 

  67. Howe MK, Dowdell K, Roy A, et al. Magnesium restores activity to peripheral blood cells in a patient with functionally impaired interleukin-2-inducible T cell kinase. Front Immunol. 2019;10:2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li FY, Chaigne-Delalande B, Su H, Uzel G, Matthews H, Lenardo MJ. XMEN disease: a new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood. 2014;123:2148–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Montfrans JM, Hoepelman AI, Otto S, et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol. 2012;129:787-93.e6.

    Article  PubMed  Google Scholar 

  70. Kasahara Y, Yachie A, Takei K, et al. Differential cellular targets of Epstein-Barr virus (EBV) infection between acute EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Blood. 2001;98:1882–8.

    Article  CAS  PubMed  Google Scholar 

  71. Toga A, Wada T, Sakakibara Y, et al. Clinical significance of cloned expansion and CD5 down-regulation in Epstein-Barr Virus (EBV)-infected CD8+ T lymphocytes in EBV-associated hemophagocytic lymphohistiocytosis. J Infect Dis. 2010;201:1923–32.

    Article  CAS  PubMed  Google Scholar 

  72. Liu P, Pan X, Chen C, et al. Nivolumab treatment of relapsed/refractory Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in adults. Blood. 2020;135:826–33.

    Article  CAS  PubMed  Google Scholar 

  73. Ito Y, Kawamura Y, Iwata S, Kawada J, Yoshikawa T, Kimura H. Demonstration of type II latency in T lymphocytes of Epstein-Barr Virus-associated hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2013;60:326–8.

    Article  PubMed  Google Scholar 

  74. Lay JD, Chuang SE, Rowe M, Su IJ. Epstein-barr virus latent membrane protein-1 mediates upregulation of tumor necrosis factor-alpha in EBV-infected T cells: implications for the pathogenesis of hemophagocytic syndrome. J Biomed Sci. 2003;10:146–55.

    CAS  PubMed  Google Scholar 

  75. Tang Y, Xu X, Song H, et al. Early diagnostic and prognostic significance of a specific Th1/Th2 cytokine pattern in children with haemophagocytic syndrome. Br J Haematol. 2008;143:84–91.

    Article  CAS  PubMed  Google Scholar 

  76. Wada T, Muraoka M, Yokoyama T, Toma T, Kanegane H, Yachie A. Cytokine profiles in children with primary Epstein-Barr virus infection. Pediatr Blood Cancer. 2013;60:E46–8.

    Article  CAS  PubMed  Google Scholar 

  77. Han XC, Ye Q, Zhang WY, Tang YM, Xu XJ, Zhang T. Cytokine profiles as novel diagnostic markers of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in children. J Crit Care. 2017;39:72–7.

    Article  CAS  PubMed  Google Scholar 

  78. Zhao XX, Lian HY, Zhang L, et al. Significance of serum Th1/Th2 cytokine levels in underlying disease classification of childhood HLH. Cytokine. 2022;149:155729.

    Article  CAS  PubMed  Google Scholar 

  79. Henter JI, Samuelsson-Horne A, Aricò M, et al. Treatment of hemophagocytic lymphohistiocytosis with HLH-94 immunochemotherapy and bone marrow transplantation. Blood. 2002;100:2367–73.

    Article  CAS  PubMed  Google Scholar 

  80. Bergsten E, Horne A, Aricó M, et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long-term results of the cooperative HLH-2004 study. Blood. 2017;130:2728–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Kawada.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Human and Animal Rights and Informed Consent

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawada, Ji. Molecular Mechanisms of Severe Diseases Caused by Epstein-Barr Virus Infection. Curr Clin Micro Rpt 10, 206–213 (2023). https://doi.org/10.1007/s40588-023-00203-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-023-00203-8

Keywords

Navigation