Log in

Three-dimensional MFBD-DEM coupling simulation of flexible wire mesh wheel–soil over lunar rough terrain

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes a comprehensive approach to studying the interaction between wire mesh wheels and rough lunar terrain to enhance the maneuverability and traction of lunar rovers. The study involves the creation of a 3D discrete element model (DEM model) that closely mimics the morphology of actual lunar soil grains. In addition, a multi-flexible-body dynamics model of a wire mesh wheel is developed and experimentally validated for stiffness. To evaluate the maneuverability of the wheel, a virtual soil bin experiment system is created, using fractal theory and DEM methodology to model wheel behavior on rough lunar terrain. The simulation tests wheel mobility in various motion states and terrain conditions. Results demonstrate that the proposed model is an effective tool for studying the interaction between elastic lunar wheels and lunar terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Basilevsky TA, Abdrakhimov AM, Head JW, Pieters CM, Wu Y, **ao L (2015) Geologic characteristics of the Luna 17/Lunokhod 1 and Chang’E-3/Yutu landing sites. Northwest Mare Imbrium Moon Planet Sp Sci 117:385–400. https://doi.org/10.1016/j.pss.2015.08.006

    Article  Google Scholar 

  2. Asnani V, Delap D, Creager C (2009) The development of wheels for the lunar roving vehicle. J Terrramech 46:89–103. https://doi.org/10.1016/j.jterra.2009.02.005

    Article  Google Scholar 

  3. Lindemann RA, Voorhees CJ (2006) Mars exploration rover mobility assembly design, test and performance. In: IEEE international conference on systems, pp 1–13

  4. Lee C, Dalcolmo J, Klinkner S (2006) Design and manufacture of the full size breadboard exomars rover chassis. In: 9th ESA workshop on advanced space technologies for robotics and automation, Noordwijk the Netherlands, pp 236–241

  5. Viscuso S, Gualandris S, Ceglia G, Visentin V (2021) Chapter 18 - Shape memory alloys for space applications. In: Shape Memory Alloy Engineering (Second Edition). Butterworth-Heinemann, Boston, pp. 609–623. https://doi.org/10.1016/B978-0-12-819264-1.00018-2.

  6. Zhao C, Zang M (2017) Application of the FEM/DEM and alternately moving road method to the simulation of tire-sand interactions. J Terrramech 72:27–38. https://doi.org/10.1016/j.jterra.2017.04.001

    Article  Google Scholar 

  7. Hambleton JP, Drescher A (2008) Modeling of wheel-induced rutting in soils: Indentation. J Terrramech 45:201–211. https://doi.org/10.1016/j.jterra.2008.11.001

    Article  Google Scholar 

  8. Chiroux RC, Foster WA (2005) Three-dimensional finite element analysis of soil interaction with a rigid wheel. Appl Math Comput 162:707–722. https://doi.org/10.1016/j.amc.2004.01.013

    Article  MathSciNet  Google Scholar 

  9. **a K (2011) Finite element modeling of tire/terrain interaction: application to predicting soil compaction and tire mobility. J Terramech 48:113–123. https://doi.org/10.1016/j.jterra.2010.05.001

    Article  Google Scholar 

  10. **a K, Yang YM (2012) Three-dimensional finite element modeling of tire/ground interaction. Int J Numer Anal Methods Geomech 36:498–516. https://doi.org/10.1002/nag.1018

    Article  Google Scholar 

  11. Cueto OG, Coronel C, Morfa C, Sosa GU, Suárez MH (2013) Three dimensional finite element model of soil compaction caused by agricultural tire traffic. Comput Electron Agric 99(6):146–152. https://doi.org/10.1016/j.compag.2013.08.026

    Article  Google Scholar 

  12. Li H, Schindler C (2013) Investigation of tire-soil interaction with analytical and finite element method. Mech Based Des Struct 41:293–315. https://doi.org/10.1080/15397734.2012.744677

    Article  Google Scholar 

  13. Khot LR, Salokhe VM, Jayasuriya H, Nakashima H (2007) Experiment validation of distinct element simulation for dynamic wheel–soil interaction. J Terrramech 44(2007):429–437. https://doi.org/10.1016/j.jterra.2007.12.002

    Article  Google Scholar 

  14. Fujii H, Oida A, Nakashima H, Miyasaka J, Momozu M, Kanamori H (2002) Analysis of interaction between lunar terrain and treaded wheel by distinct element method. In: 14th international conference of the international society for terrain-vehicle systems, pp 1–10

  15. Nakashima H, Fujii H, Oida A, Momozu M, Kawase Y, Kanamori H (2007) Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM. J Terrramech 44:153–162. https://doi.org/10.1016/j.jterra.2005.11.001

    Article  Google Scholar 

  16. Smith W, Peng H (2013) Modeling of wheel–soil interaction over rough terrain using the discrete element method. J Terramech 50:277–287. https://doi.org/10.1016/j.jterra.2013.09.002

    Article  Google Scholar 

  17. Hopkins M, Johnson J, Sullivan R (2008) Discrete element modeling of a rover wheel in granular material under the influence of Earth, Mars, and Lunar Gravity. In: Biennial Asce aerospace division international conference on engineering, pp 1–7

  18. Knuth MA, Johnson JB, Hopkins MA, Sullivan RJ, Moore JM (2012) Discrete element modeling of a Mars exploration rover wheel in granular material. J Terrramech 49:27–36. https://doi.org/10.1016/j.jterra.2011.09.003

    Article  Google Scholar 

  19. Medina C, Zeghal M (2006) Micromechanical modeling of the interaction of a soil-rigid wheel system. In: Workshop on Biennial international conference on engineering, pp 1–8

  20. Li J, Zhou M, Jia Y, Chen B, Ma W (2006) Simulation of lunar soil for vehicle-terramechanics research in laboratory. Rock Soil Mech 29(6):1–5. https://doi.org/10.3969/j.issn.1000-7598.2008.06.023

    Article  Google Scholar 

  21. Nakashima H, Oida A (2001) Simulation of tire interaction by acou Pled distinet element finite element method. In: Proeeedings of the 6th Asia Pacifie conferenee of the intemational soeiety for terrain vehiele systems, pp 59–63

  22. Mark M, Frank V, Bernhard P (2015) DEM-FEM coupling simulations of the interactions between a tire tread and granular terrain. Comput Methods Appl Mech Eng 289:227–248. https://doi.org/10.1016/j.cma.2015.02.014

    Article  MathSciNet  Google Scholar 

  23. Yang P, Zang M, Zeng H, Guo X (2020) The interactions between an off-road tire and granular terrain: GPU-based DEM-FEM simulation and experimental validation. Int J Mech Sci 179:105634. https://doi.org/10.1016/j.ijmecsci.2020.105634

    Article  Google Scholar 

  24. Yang P, Zang M, Zeng H (2020) An efficient 3D DEM-FEM contact detection algorithm for tire-sand interaction. Powder Technol 360:1102–1116. https://doi.org/10.1016/j.powtec.2019.10.069

    Article  Google Scholar 

  25. Giancarlo G (2006) Design of planetary exploration vehicles. In: Asme Biennial conference on engineering systems design & analysis

  26. Fan X, Deng Z, Gao H, Ding L (2014) Design & analysis of flexible wire mesh tire for manned lunar roving vehicle. J Astronaut 35(02):235–244. https://doi.org/10.3873/j.issn.1000-1328.2014.02.016

    Article  Google Scholar 

  27. **ao W, Zhang Y (2016) Design of manned lunar rover wheels and improvement in soil mechanics formulas for elastic wheels in consideration of deformation. J Terrramech 65:61–71. https://doi.org/10.1016/j.jterra.2016.03.004

    Article  Google Scholar 

  28. Zhu J, Zou M, Shen Y (2022) 3D DEM-FEM simulation of the flexible metal wheel–soil interaction in low gravity environments. In: Proceedings of the Institution of Mechanical Engineers, Part C: journal of mechanical engineering science, pp 1–12. https://doi.org/10.1177/095440622211266 30

  29. Zou M, Zhu J, Wang K, Lin Y, Qi Y (2020) Design and mechanical behavior evaluation of flexible metal wheel for crewed lunar rover. Acta Astronaut 176:69–76. https://doi.org/10.1016/j.actaastro.2020.06.010

    Article  Google Scholar 

  30. Naik JS, Misra NK (2015) Lunar rover virtual simulation system over a 3D terrain environment. Int J Comput Sci Issues 12(1):161–168

    Google Scholar 

  31. Gao H, **a K, Ding LZ, Liu G (2015) Optimized control for longitudinal slip ratio with reduced energy consumption. Acta Astronaut 115:1–17. https://doi.org/10.1016/j.actaastro.2015.04.019

    Article  Google Scholar 

  32. Yoo WS, Kim SS, Park TW, Bae DS, Choi JH (2003) Multi-body dynamics research in korea. JSME Int J Ser C Mech Syst Mach Elem Manuf 46(2):449–458

    Google Scholar 

  33. Sanborn G, Choi J, Choi JH (2021) Strategy for co-simulation of multi-flexible-body dynamics and the discrete element method. J Mech Sci Technol 35(10):4363–4380. https://doi.org/10.1007/s12206-021-0908-2

    Article  Google Scholar 

  34. Kim S, Choi J, Kim JG, Hatakeyama R, ** HC (2019) Coupled simulation of elastohydrodynamics and multi-flexible body dynamics in piston-lubrication system. Adv Mech Eng 11(12):1–13. https://doi.org/10.1177/1687814019895855

    Article  Google Scholar 

  35. Bae DS, Han JM, Yoo HH (1999) A generalized recursive formulation for constrained mechanical system dynamics. Mech Struct Mach 27(3):293–315. https://doi.org/10.1080/08905459908915700

    Article  Google Scholar 

  36. Liu Z, Hong J, Liu J (2009) Finite element formulation for dynamics of planar flexible multi-beam system. Multibody Syst Dyn 22:1–26. https://doi.org/10.1007/s11044-009-9154-6

    Article  MathSciNet  Google Scholar 

  37. Murthy SS, Gallagher RH (1985) A triangular thin-shell finite element based on discrete Kirchhoff theory. Comput Methods Appl Mech Eng 54(2):197–222. https://doi.org/10.1016/0045-7825(86)90126-X

    Article  Google Scholar 

  38. Choi J, Kim SS, Rhim SS, Choi JH (2012) Numerical modeling of journal bearing considering both elastohydrodynamic lubrication and multi-flexible-body dynamics. Int J Automot Technol 13(2):255–261. https://doi.org/10.1007/s12239-012-0022-7

    Article  Google Scholar 

  39. Choi J, ** HC (2015) Analysis method for multi-flexible-body dynamics solver in RecurDyn. Trans Korean Soc Mech Eng 3(2):107–115. https://doi.org/10.3795/KSME-C.2015.3.2.107

    Article  MathSciNet  Google Scholar 

  40. Melzer K (1971) Performance of the Boeing LRV Wheels in a Lunar Soil Simulant. Technical Report 2, Mobility and Environmental Division U.S. Army Engineer Waterways Experiment Station.

  41. Ding L, Gao H, Deng Z, Nagatani K, Yoshida K (2011) Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil. J Terrramech 48(1):27–45. https://doi.org/10.1016/j.jterra.2010.08.001

    Article  Google Scholar 

  42. Slyuta EN (2014) Physical and mechanical properties of the lunar soil (A review). Sol Syst Res 48(5):358–382

    Article  Google Scholar 

  43. Modenese C (2013) Numerical study of the mechanical properties of lunar soil by the discrete element method. Oxford University

  44. Jiang M, Dai Y, Cui L, ** B (2017) Experimental and dem analyses on wheel–soil interaction. J Terrramech 76:15–28. https://doi.org/10.1016/j.jterra.2017.12.001

    Article  Google Scholar 

  45. Zhu J, Zou M, Liu Y, Gao K, Su B, Qi Y (2022) Measurement and calibration of DEM parameters of lunar soil simulant. Acta Astronaut 191:169–177. https://doi.org/10.1016/j.actaastro.2021.11.009

    Article  Google Scholar 

  46. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324(1558):301–313. https://doi.org/10.1098/rspa.1971.0141

    Article  Google Scholar 

  47. Santos KG, Campos A, Oliveira OS, Ferreira LV, Francisquetti MC, Barrozo M (2015) DEM simulations of dynamic angle of repose of acerola residue: a parametric study using a response surface technique. Blucher Chem Eng Proceed 1:11326–11333

    Google Scholar 

  48. Costes NC, Farmer JE, George EB (1973) Mobility performance of the lunar roving vehicle: Terrestrial studies: Apollo 15 results. NASA Technical report

  49. Liu T, Liang L, Zhao Y, Cao D (2020) An alterable constitutive law of high-accuracy DEM model of lunar soil. Adv Sp Res 66:1286–1302. https://doi.org/10.1016/j.asr.2020.06.026

    Article  Google Scholar 

  50. Li Y, Wu W, Chu X, Zou W (2020) Effects of stress paths on triaxial compression mechanical properties of QH-E lunar soil simulant studied by DEM simulation. Granul Matter 22:1–10. https://doi.org/10.1007/s10035-020-0999-y

    Article  Google Scholar 

  51. Katagiri J, Matsushima T, Yamada Y, Tsuchiyama A, Nakano T, Uesugi K (2014) Investigation of 3D grain shape characteristics of lunar soil retrieved in Apollo 16 using image-based discrete-element modeling. J Aerosp Eng 28(4):04014092. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000421

    Article  Google Scholar 

  52. Carrier WD (1973) Lunar soil grain size distribution. Moon 6(3–4):250–263. https://doi.org/10.1007/BF00562206

    Article  Google Scholar 

  53. Chen Z, Xue D, Wang G, Cui D, Fang Y, Wang S (2021) Simulation and optimization of the tracked chassis performance of electric shovel based on DEM-MBD. Powder Technol 390(2021):428–441. https://doi.org/10.1016/j.powtec.2021.05.085

    Article  Google Scholar 

  54. Norros I, Mannersalo P, Wang J (2003) Simulation of fractional Brownian motion with conditionalized random midpoint displacement. VTT Publ Inf Serv 491:1–25. https://doi.org/10.1017/S0269964803173081

    Article  Google Scholar 

  55. Lu Y, Huai W, Zhang J (2018) Construction of three-dimensional road surface and application on interaction between vehicle and road. Shock Vib PT 2:1–14. https://doi.org/10.1155/2018/2535409

    Article  Google Scholar 

  56. Yue Z (2008) The tentative study of lunar tectonic features and remote sensing images interpretation. PhD thesis. China University of Geosciences, China

  57. Bu Y, Sheng Q, Tang G, Zhou J (2013) Lunar local terrain creation based on integration of fractal model and shape models. J Syst Simul 25:2638–2643. https://doi.org/10.16182/j.cnki.joss.2013.11.004

    Article  Google Scholar 

  58. Connor HF (1971). Development of a lunar surface model for the Apollo 15 landing site-case. NASA CR-121359, Washington D C: NASA.

  59. Moore HJ, Pike RJ, Ulrich GE (1969) Lunar Terrain and Traverse Data for Lunar Roving Vehicle Design Study. Washington,DC:NASA

  60. Fan X (2014) Structure design and performance research on suspension and wheel for manned lunar vehicle. PhD thesis. Harbin Institute of Technology, China

  61. Ebeida MS, Mitchell SA, Patney A, Davidson AA, Owens JD (2012) A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions. Computer Graphics Forum 31(2pt4): 785-794. https://doi.org/10.1111/j.1467-8659.2012.03059.x

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 12272141) and Fundamental Research Funds for the Central Universities (2172021XXJS048). The financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Zhang, Y., Wu, J. et al. Three-dimensional MFBD-DEM coupling simulation of flexible wire mesh wheel–soil over lunar rough terrain. Comp. Part. Mech. (2024). https://doi.org/10.1007/s40571-024-00781-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-024-00781-4

Keywords

Navigation