Log in

On the discrete Heisenberg group and commutative modular variables in quantum mechanics: I. The Abelian symplectic shadow and integrality of area

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

Global interference phenomena start to manifest in quantum transitions involving at least two projection filters which cannot be realized simultaneously, like in the case of the double-slit experiment. In terms of the 3-vertex invariants of the projective space of rays, thought of as a symplectic phase space, we encounter products involving the complex-valued \({\mathbf {I}}_3 (\varPsi _{in}, \varPsi _b, \varPsi _{fin})\) with the complex conjugate \(\mathbf {I_3}^*(\varPsi _{in}, \varPsi _b', \varPsi _{fin})\), where the projection operators \(|\psi _b \rangle \langle \psi _b |\) and \(|\psi _b' \rangle \langle \psi _b' |\) are not simultaneously realizable. In this way, interference can be expressed in terms of products of this form defined over squares in the space of rays, which can be triangulated. Triangles in this space encode the invariant information of the geometric phase factor. From this perspective, we qualify the proposal of Aharonov and collaborators pertaining to the consideration of commutative modular variables evaluated in \(\mathbb R/ {\mathbb {Z}}\) in deciphering the quantum interference pattern of the double-slit experiment. The quantum modular variables pertaining to conjugate observables are encoded in terms of one-parameter unitary groups acting jointly on the phase space, thus modeled through the continuous group action of \({\mathbb {R}}^2\). We show that \(\frac{h}{2}\) expresses the minimal indistinguishable invariant area of the 2D symplectic Abelian shadow of the symplectic ball of radius \(R=\sqrt{\hbar }\) in the 2n-phase space of the conjugate position and momenta. The above conclusion leads to a re-estimation of Weyl’s view of the quantum kinematical space in terms of an Abelian group of unitary ray rotations, and in particular the role that the discrete Heisenberg group plays in this conundrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58(16), 1593–1596 (1987)

    Article  MathSciNet  Google Scholar 

  2. Aharonov, Y., Bergmann, P.J., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. B. 134(6), 1410–1416 (1964)

    Article  MathSciNet  Google Scholar 

  3. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  MathSciNet  Google Scholar 

  4. Aharonov, Y., Bohm, D.: Further considerations on electromagnetic potentials in the quantum theory. Phys. Rev. 123, 1511–1524 (1961)

    Article  MathSciNet  Google Scholar 

  5. Aharonov, Y., Cohen, E., Gruss, E., Landsberger, T.: Measurement and collapse within the two-state vector formalism. Quantum Stud. Math. Found. 1(1–2), 133–146 (2014)

    Article  Google Scholar 

  6. Aharonov, Y., Petersen, A., Pendleton, H.: Modular variables in quantum theory. Int. J. Theor. Phys. 2, 213–230 (1969)

    Article  Google Scholar 

  7. Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory For the Perplexed. Wiley, New York (2003)

    MATH  Google Scholar 

  8. Bargmann, V.: Note on Wigner’s theorem on symmetry operations. J. Math. Phys. 5, 862–868 (1964)

    Article  MathSciNet  Google Scholar 

  9. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45 (1984)

    Article  MathSciNet  Google Scholar 

  10. Brunn, K.H.: Über Verkettung. Sitzungsbericht der Bayerischen Akademie der Wissenschaft Mathematisch Naturwissenschaftliche Abteilung 22, 77–99 (1892)

    MATH  Google Scholar 

  11. Choi, M.-D.: The full C* algebra of the free group on two generators. Pac. J. Math. 87(1), 41–48 (1980)

    Article  MathSciNet  Google Scholar 

  12. Cohen, J.: \(C^{\star }\)-algebras without idempotents. J. Funct. Anal. 33, 211–216 (1979)

    Article  MathSciNet  Google Scholar 

  13. da Silva, A.C.: Lectures on Symplectic Geometry, LNM1764. Springer, Berlin (2001)

    Google Scholar 

  14. Debrunner, H.: Links of Brunnian type. Duke Math. J. 28, 17–23 (1961)

    Article  MathSciNet  Google Scholar 

  15. Epperson, M., Zafiris, E.: Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature. Lexington Books, Lanham (2013)

    Google Scholar 

  16. Gromov, M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MathSciNet  Google Scholar 

  17. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  18. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  19. Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5, 2nd edn. Springer, Berlin (1998)

    MATH  Google Scholar 

  20. Mackey, G.W.: A theorem of Stone and von Neumann. Duke Math. J. 16, 313–326 (1949)

    Article  MathSciNet  Google Scholar 

  21. Mackey, G.W.: Unitary representations of group extensions, \(I\). Acta Math. 99, 265–311 (1958)

    Article  MathSciNet  Google Scholar 

  22. Omnés, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)

    Book  Google Scholar 

  23. Schwinger, J.: Quantum Kinematics and Dynamics. Westview Press, Boulder (2000)

    MATH  Google Scholar 

  24. Selesnick, S.A.: Quanta, Logic and Spacetime, 2nd edn. World Scientific, Singapore (2003)

    Book  Google Scholar 

  25. Simon, B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167 (1983)

    Article  MathSciNet  Google Scholar 

  26. Souriau, J.M.: Structure of Dynamical Systems. A Symplectic View of Physics. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  27. Stone, M.H.: On one-parameter unitary groups in Hilbert Space. Ann. Math. 33(3), 643–648 (1932)

    Article  MathSciNet  Google Scholar 

  28. Stone, M.H.: Linear transformations in Hilbert space, III. Proc. Natl. Acad. Sci. USA 16, 172–175 (1930)

    Article  Google Scholar 

  29. Tollaksen, J., Aharonov, Y., Casher, A., Kaufherr, T., Nussinov, S.: Quantum interference experiments, modular variables and weak measurements. N. J. Phys. 12, 013023 (2010)

    Article  Google Scholar 

  30. Urbantke, H.K.: The Hopf fibration-seven times in physics. J. Geometry Phys. 46(2), 125–150 (2003)

    Article  MathSciNet  Google Scholar 

  31. Vaidman, L.: Weak-measurement elements of reality. Found. Phys. 26(7), 895–906 (1996)

    Article  MathSciNet  Google Scholar 

  32. Varadarajan, V.S.: Geometry of Quantum Theory, 2nd edn. Springer, New York (1985)

    MATH  Google Scholar 

  33. von Müller, A., Zafiris, E.: Concept and Formalization of Constellatory Self-Unfolding: A Novel Perspective on the Relation between Quantum and Relativistic Physics, Series on Thinking. Springer (2018)

  34. von Müller, A.: Die Selbstentfaltung der Welt - Eine Einladung, Zeit und Wirklichkeit neu zu denken und mit Komplexität anders umzugehen - Siedler Verlag München (2020)

  35. von Neumann, J.: Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104, 570–578 (1931)

    Article  MathSciNet  Google Scholar 

  36. Watanabe, S.: Symmetry of physical laws. Part III. Prediction and retrodiction. Rev. Mod. Phys. 27(2), 179 (1955)

    Article  MathSciNet  Google Scholar 

  37. Weyl, H.: Theory of Groups and Quantum Mechanics. Dover, New York (1931)

    MATH  Google Scholar 

  38. Wilczek, F., Shapere, A.: Geometric Phases in Physics. World Scientific, Singapore (1989)

    Book  Google Scholar 

  39. Zafiris, E.: Generalized topological covering systems on quantum events’ structures. J. Phys. A Math. Gener. 39, 2 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Zafiris, E.: Sheaf-theoretic representation of quantum measure algebras. J. Math. Phys. 47, 092103 (2006)

    Article  MathSciNet  Google Scholar 

  41. Zafiris, E., Karakostas, V.: A categorial semantic representation of quantum event structures. Found. Phys. 43, 1090–1123 (2013)

    Article  MathSciNet  Google Scholar 

  42. Zafiris, E.: The global symmetry group of quantum spectral beams and geometric phase factors. Adv. Math. Phys. (2015). https://doi.org/10.1155/2015/124393. (Article ID 124393)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zafiris, E.: Loops, projective invariants and the realization of the Borromean topological link in quantum mechanics. Quantum Stud. Math. Found. 3, 337–359 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Zafiris.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data sharing

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafiris, E., Müller, A.v. On the discrete Heisenberg group and commutative modular variables in quantum mechanics: I. The Abelian symplectic shadow and integrality of area. Quantum Stud.: Math. Found. 8, 391–410 (2021). https://doi.org/10.1007/s40509-021-00251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-021-00251-z

Keywords

Navigation