Log in

Comparative stress physiological analysis of indigenous rice cultivars of Eastern Himalayan Region under elevated temperature of changing climate

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Rice (Oryza sativa L.) is the major staple crop of Eastern Himalayan Region (EHR) and its cultivation and productivity is severely constrained by elevated temperature (T) in cooler mountain regions like EHR. Present study on stress physiological response of indigenous rice cultivars (68no.) of EHR for elevated T of Carbon dioxide temperature gradient chamber (CTGC) revealed that leaf chlorophyll and leaf T has varied significantly with chlorophyll content index (CCI) of 35.05 and 28.34 °C canopy temperature (CT) and range of 25.0–49.3CCI and 23.1–35.9 °C CT. Higher chlorophyll of 35.02–40.0 CCI and cooler canopy T of 26.0–29.0 °C under elevated T was recorded by 45.0% and 51.0% rice cultivars against 35.0% and 65.0% cultivars under ambient T. Under elevated T high photosynthetic types had 23.5% and 60.4% higher photosynthetic rate over moderate and low photosynthetic types, respectively. Cultivar TRC2016-14 had highest SLW (Specific leaf weight) and leaf carotenoids, whereas Saplani and Anjali recorded highest LT (Leaf thickness) and highest Chl a/b ratio under elevated T. CMS (Cell membrane stability) and LRWC (Leaf relative water content) under elevated T was 29.8% and 24.2% lower in low tolerant types (LTT) compared to high tolerant types (HTT). Grain chaffiness was lower in HTT (73.7%) compared to LTT (113.5%), whereas the grain yield was 47.8% lower in LTT than HTT (23.4%). TRC 2016-14 and Anjali showing higher yield of 11.7 and 11.3qt/ha respectively under elevated T are promising for crop stress improvement and cultivation in EHR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

Data used to generate the research in the paper would be available with authors which could be accessed with consent.

References

  • Bahuguna, R. N., Jha, J., Pal, M., Shah, D., Lawas, L. M. F., Khetarpal, S., et al. (2014). Physiological and biochemical characterization of NERICA-L-44: A novel source of heat tolerance at the vegetative and reproductive stages in rice. Physiologia Plantarum, 154, 543–559.

    Article  PubMed  Google Scholar 

  • Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for the estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3), 413–428.

    Article  Google Scholar 

  • Berry, J., & Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31, 491–543.

    Article  Google Scholar 

  • Chakrabarti, B., Singh, S. D., Kumar, V., Harit, R. C., & Misra, S. (2013). Growth and yield response of wheat and chickpea crops under high temperature. Indian Journal of Plant Physiology, 18, 7–14.

    Article  Google Scholar 

  • Chandola, P., Bhandari, K., & Guru, S. K. (2015). Effect of pre-emergence herbicides on weed growth and physiological traits of transplanted rice. Indian Journal of Weed Science, 47(4), 345–348.

    Google Scholar 

  • Croft, H., Chen, J. M., Luo, X., Bartlett, P., Chen, B., & Staebler, R. M. (2017). Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biology, 23, 3513–3524. https://doi.org/10.1111/gcb.13599

    Article  PubMed  Google Scholar 

  • Czyczyło-Mysza, I. M., Marcińska, I., Skrzypek, E., Bocianowski, J., Dziurka, K., Rančić, D., & Quarrie, S. A. (2018). Genetic analysis of water loss of excised leaves associated with drought tolerance in wheat. PeerJ, 6, e5063.

    Article  PubMed  PubMed Central  Google Scholar 

  • Das, A., Ghosh, P. K., Lal, R., Saha, R., & Ngachan, S. V. (2017). Soil quality effect of conservation practices in maize–rapeseed crop** system in Eastern Himalaya. Land Degradation and Development, 28, 1862–1874. https://doi.org/10.1002/ldr.2325

    Article  Google Scholar 

  • Das, A., Patel, D. P., Munda, G. C., Ramkrushna, G. I., Kumar, M., & Ngachan, S. V. (2014). Improving productivity, water and energy use efficiency in lowland rice (Oryza sativa) through appropriate establishment methods and nutrient management practices in the mid altitudes of north east India. Experimental Agriculture, 50(3), 353–375.

    Article  Google Scholar 

  • Debnath, S., Ramakrishnan, R. S., Kumawat, R. K., Vengavasi, K., Kumar, A., Sharma, R., ... & Samaiya, R. K. (2022b). Plant growth regulator mediated improved leaf area development and dry matter production under late sown high temperature stress condition in chickpea. Biological Forum: An International Journal , 14(4), 331–342.

  • Debnath, S., Ramakrishnan, R. S., Kumawat, R. K., Ghogare, M., Singh, P. P., Kumar, A., ... & Samaiya, R. K..(2022a). Plant growth regulators application on biomass partitioning in source and sink tissues under timely sown and high temperature stress condition in chickpea. Biological Forum: An International Journal, 14(4a), 318–327

  • Gholizadeh, A., Saberioon, M., Boruvka, L., Wavayok, A., & Soom, M. A. M. (2017). Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management. Information Processing in Agriculture, 4, 259–268. https://doi.org/10.1016/j.inpa.2017.08.002

    Article  Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical Procedure for Agricultural Research. International Rice Research Institute (2nd ed.). Wiley.

    Google Scholar 

  • Greer, D. H., & Weedon, M. M. (2012). Modeling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant and Cell Physiology, 50, 1911–1922.

    Google Scholar 

  • Guo, Y. P., Zhou, H. F., & Zhang, L. C. (2006). Photosynthetic characteristics and protective mechanisms against photo-oxidation during high temperature stress in two citrus species. Scientia Horticulturae, 108, 260–267.

    Article  CAS  Google Scholar 

  • Hajong, S., Rangappa, K., Dasaiah, H. G., Moirangthem, P., Saikia, U. S., & Bhattacharjee, B., et al. (2022) Genotypic variability and physio-morphological efficiency of buckwheat (Fagopyrum spp.) under moisture stress at mid-altitudes of Meghalaya (India). Crop and Pasture Science, 74, 204–218.https://doi.org/10.1071/CP22062

    Article  CAS  Google Scholar 

  • Haldimann, P., Fracheboud, Y., & Stamp, P. (1996). Photosynthetic performance and resistance to photoinhibition of Zea mays L. leaves grown at sub-optimal temperature. Plant, Cell and Environment, 19, 85–92.

    Article  CAS  Google Scholar 

  • Hao, L., Guo, L., Li, R., Cheng, Y., Huang, L., Zhou, H., et al. (2019). Responses of photosynthesis to high temperature stress associated with changes in leaf structure and biochemistry of blueberry (Vaccinium corymbosum L.). Scientia Horticulturae, 246, 251–264.

    Article  CAS  Google Scholar 

  • Huang, M., Shan, S., Zhou, X., Chen, J., Cao, F., Jiang, L., & Zou, Y. (2016). Leaf photosynthetic performance related to higher radiation use efficiency and grain yield in hybrid rice. Field Crops Research, 193, 87–93. https://doi.org/10.1016/S2095-3119(16)61535-6

    Article  Google Scholar 

  • IPCC. (2013). Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis, Summary for Policymakers.

  • Jagadish, S. V., Krishna, J., Madan, P., Sivakumar, S., Madasamy, P., & Kadambot, H. M. S. (2020). Heat stress resilient crops for future hotter environments. Plant Physiology Reports, 25(4), 529–532. https://doi.org/10.1007/s40502-020-00559-9

    Article  Google Scholar 

  • Jagadish, S. V. K., Murty, M. V. R., & Quick, W. P. (2014). Rice responses to rising temperatures- challenges, perspectives and future directions. Plant, Cell and Environment., 38, 1686–1698.

    Article  Google Scholar 

  • Jagadish, S. V. K., Muthurajan, R., Rang, Z. W., Malo, R., Heuer, S., Bennett, J., et al. (2011). Spikelet proteomic response to combined water deficit and heat stress in rice (Oryza sativa cv. N22). Rice, 4, 1–11.

    Article  Google Scholar 

  • Jiang, Y., & Bingru, H. (2001). Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science, 41, 436–442.

    Article  CAS  Google Scholar 

  • Kimball, B. A. (1983). Carbon dioxide and agricultural yields: Anassemblage and analyses of 430 prior observations. Journal of Agronomy, 75, 779–788.

    Article  Google Scholar 

  • Kimball, B., Kobayashi, A. K., & Bindi, M. (2002). Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy, 77, 293–368.

    Article  Google Scholar 

  • Krishnan, P., Ramakrishnan, B., Raja, R., & K. (2011). High-temperature effects on rice growth, yield, and grain quality. Advances in Agronomy., 111, 87–206.

    Article  CAS  Google Scholar 

  • Krishnappa, R., Amit, K., Choudhury, B. U., Hazarika, S., Rajkhowa, D. J., Ramesh, T., Prabha, M., Debnath, S., Aochen, C., Jayanta, L., Ayam G., Bijoya, B., Aravind, K., & Mishra, V. K. (2021). Carbon dioxide enrichment technologies for Climate Change Studies in North Eastern Region of India. Technical Bulletin No.F.No. RC/PME/Pub/F-2/2021/101, ICAR Research complex for NEH region Umiam, Meghalaya, India (pp. 1–60).

  • Krishnappa, R., Dipjyoti, R., Meghna, H., Anjan, K. S., Uday, S. S., & Kaberi, M. (2017). Physiological efficiency and drought tolerance ability of Buckwheat (Fagopyrum esculentum L.) under hill slopes of North eastern Himalayan region. Proceedings of Inter Drought-V, 21, 177.

    Google Scholar 

  • Larkindale, J., & Knight, M. R. (2002). Protection against heat stress induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128, 682–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson, T., Davey, P. A., Yates, S. A., Bechtold, U., Baeshen, M., Baeshen, N.,… & Mullineaux, P. M. (2014). C3 photosynthesis in the desert plant Rhazya stricta is fully functional at high temperatures and light intensities. New Phytologist, 201(3), 862–873.

  • Layek, J., Rangappa, K., Das, A., Ansari, M. A., Choudhary, S., Rajbonshi, N., Patra, S., Kumar, A., Mishra, V. K., Ravisankar, N., Kumar, S., Hazarika, S., Dutta, S. K., Babu, S., Tahasildar, M., & Shettigar, N. (2023). Evaluation of millets for physio-chemical and root morphological traits suitable for resilient farming and nutritional security in Eastern Himalayas. Frontier Nutrition, 10, 1198023. https://doi.org/10.3389/fnut.2023.1198023

    Article  CAS  Google Scholar 

  • Li, J., **n, Y., & Yuan, l. (2009). Hybrid rice technology development: ensuring China's food security. International Food Policy Research Institute, 918.

  • Liszkay, A., van der Zalm, E., & Schopfer, P. (2004). Production of reactive oxygen intermediates (O2 ·–, H2 O2 and OH·– ) by maize roots and their role in wall loosening and elongation growth. Plant Physiology, 136, 3114–3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Z., Radin, J. W., Turcottem, E. L., Percy, R., & Zeiger, E. (1994). High yields in advanced lines of Pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature. Physiology Plantarum, 92, 266–272.

    Article  CAS  Google Scholar 

  • Mamrutha, H. M., Davinder, S., Rinki, K., Gopalareddy, K., Hanif, K., Singh, S. K., Gyanendra, S., & Gyanendra, P. S. (2022). Pollen viability as a potential trait for screening heat-tolerant wheat (Triticum aestivum L.). Functional Plant Biology, 49(7), 625–633. https://doi.org/10.1071/FP21096

    Article  CAS  Google Scholar 

  • Martorell, S., Medrano, H., Tomás, M., Escalona, J. M., Flexas, J., & Díaz-Espejo, A. (2015). Plasticity of vulnerability to leaf hydraulic dysfunction during acclimation to drought in grapevines: An osmotic-mediated process. Physiologia Plantarum, 153, 381–391. https://doi.org/10.1111/ppl.12253

    Article  CAS  PubMed  Google Scholar 

  • Medrano, H., Tomas, M., Martorell, S., Flexas, J., Hernandez, E., Rossello, J., Pou, A., Escalona, J. M., & Bota, J. (2015). From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. The Crop Journal, 3(3), 220–222.

    Article  Google Scholar 

  • Mishra, S., Laxman, R. H., Madhavi Reddy, K., & Venugopalan, R. (2020). TIR approach and stress tolerance indices to identify donor for high-temperature stress tolerance in pepper (Capsicum annuum L.). Plant Genetic Resources: Characterization and Utilization, 18(1), 19–27. https://doi.org/10.1017/S147926211900042X

    Article  CAS  Google Scholar 

  • Misyura, M., Colasanti, J., & Rothstein, S. J. (2012). Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions. Journal of Experimental Botany, 63(2), 695–709. https://doi.org/10.1093/jxb/ers328

    Article  CAS  Google Scholar 

  • Morales, D., Rodriguez, P., Dellamico, J., Nicholas, E., Torrecillas, A., & Sanchez- Blanco, M. J. (2003). High temperature pre-conditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biologia Plantarum, 47, 203–208.

    Article  Google Scholar 

  • Nguyen, N. (2002). Global Climate Changes and Rice Food Security. FAO.

    Google Scholar 

  • Patel, D. P., Das, A., Munda, G. C., Ghosh, P. K., Bordoloi, J. S., & Kumar, M. (2010). Evaluation of yield and physiological attributes of high yielding rice varieties under aerobic and flood irrigated management practices in mid -hills ecosystem. Agricultural Water Management, 97, 1269–1276.

    Article  Google Scholar 

  • Peer, L. A., Dar, Z. A., Lone, A. A., Bhat, M. Y., & Ahamad, N. (2020). High temperature triggered plant responses from whole plant to cellular level: A review. Plant Physiology Reports. https://doi.org/10.1007/s40502-020-00551-3

    Article  Google Scholar 

  • Pramanik, K., & Bera, A. K. (2013). Effect of seedling age and nitrogen fertilizer on growth, chlorophyll content, yield and economics of hybrid rice (Oryza sativa L.). International Journal of Agronomy and Plant Production, 4, 3489–3499.

    Google Scholar 

  • Prasad, P. V. V., Boote, K. J., Allen, H., & Thomas, J. M. G. (2002). Effect of elevated temperature and carbon dioxide on seed set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biology, 8, 710–721.

    Article  Google Scholar 

  • Prasad, P. V. V., Boote, K. J., Allen, L. H., Sheehy, J. J. E., & Thomas, J. M. G. (2006). Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 95, 398–411.

    Article  Google Scholar 

  • Rajbhandari, B. P. (2004). Eco-Physiological Aspects of Common Buckwheat. In Proceedings of the 9th International Symposium on Buckwheat, Prague (pp. 101–108).

  • Rangappa, K., Dipjyoti, R., Meghna, H., Anjan, K.S., Uday, S.S., Kaberi, M., Nishant, A.D., Anup, D., Gangarani, A., Subhash, B., Thoithoi, D., Prabha, M., Ngachan, S.V.(2017). Physiological efficiency and drought tolerance ability of Buckwheat (Fagopyrum esculentum L.) under hill slopes of North eastern Himalayan region. In ’Proceedings of Inter Drought-V’, 21–25 February 2017 (p. 177). ICRISAT.

  • Rangappa, K., Anup, D., Jayanta, L., Savita, B., Debnath, S., Ingudam, B., Ayam, G., Mohapatra, K. P., Choudhury, B. U., & Mishra, V. K. (2024). Conservation tillage and residue management practices in rice improves stress tolerance of succeeding vegetable pea by regulating physiological traits in Eastern Himalayas. Scientia Horticulturae, 327, 112842.

    Article  CAS  Google Scholar 

  • Rangappa, K., Rajkhowa, D., Layek, J., Das, A., Saikia, U. S., Mahanta, K., Sarma, A. K., Moirangthem, P., Mishra, V. K., Deshmukh, N. A., Rajbonshi, N., & Kandpal, B. K. (2023). Year-round growth potential and moisture stress tolerance of buckwheat (Fagopyrum esculentum L.) under fragile hill ecosystems of the Eastern Himalayas (India). Frontiers of Sustainable Food Systems, 7, 1190807. https://doi.org/10.3389/fsufs.2023.1190807

    Article  Google Scholar 

  • Ravikiran, K. T., Krishnan, S. G., Vinod, K. K., Dhawana, G., Dwivedia, P., Kumara, P., et al. (2020). A trait specific QTL survey identifies NL44, a NERICA cultivar as a novel source for reproductive stage heat stress tolerance in rice. Plant Physiology Reports. https://doi.org/10.1007/s40502-020-00547-z

    Article  Google Scholar 

  • Rosenzweig, C., & Hillel, D. (1995). Potential impacts of climate change on agriculture and world food supply. Consequences Summer, 24–32.

  • Saikia U.S., Krishnappa, R., Goswami, B., Rajkhowa, D.J., & Ngachan, S.V. (2018) Evaluating Resilience of Upland Rice to Water Stress through Study of Physiological Responses in Subtropical hills of North East India. Indian Journal of Hill Farming, 31(2), 236-242.

    Google Scholar 

  • Sangwan, V., Orvar, B. L., Beyerly, J., Hirt, H., & Dhindsa, R. S. (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant Journal, 31, 629–638.

    Article  CAS  Google Scholar 

  • Seki, M., Umezawa, T., Urano, K., & Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Current Opinions Plant Biolology, 10, 296–302. https://doi.org/10.1016/j.pbi.2007.04.014

    Article  CAS  Google Scholar 

  • Senthil-Kumar, M., Ganesh, K., Venkatachalayya, S., & Makarla, U. (2007). Assessment of variability in acquired thermotolerance: Potential option to study genotypic response and the relevance of stress genes. Journal of Plant Physiology, 164, 111–125.

    Article  CAS  PubMed  Google Scholar 

  • Shaheen, M. R., Choudhury, M. A., Muhammad, A., & Ejaj, A. W. (2015). Morpho-physiological evaluation of tomato genotypes under high temperature stress conditions. Journal of the Science of Food and Agriculture, 96, 2698–2704.

    Article  PubMed  Google Scholar 

  • Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environment, 28, 269–277.

    Article  CAS  Google Scholar 

  • Shi, W., Ishimaru, T., Gannaban, R. B., Oane, W., & Jagadish, S. V. K. (2014). Popular rice (Oryza sativa L.) cultivars show contrasting responses to heat stress at gametogenesis and anthesis. Crop Science., 55, 589–596.

    Article  Google Scholar 

  • Sohn, S. O., & Back, K. (2007). Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biologia Plantarum, 51, 340–342.

    Article  CAS  Google Scholar 

  • Soltys-Kalina, D., Jarosław, P., Strzelczyk-Żyta, D., Jadwiga, Ś, & Marczewski, W. (2016). The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breeding Science, 66, 328–331. https://doi.org/10.1270/jsbbs.66.328

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugenith, A., Lourdes, Y., José Díez, M., Prohens, J., Boscaiu, M., & Vicente, O. (2020). The use of proline in screening for tolerance to drought and salinity in common bean (Phaseolus vulgaris L.). Genotypes Agronomy, 10, 817.

    Article  Google Scholar 

  • Sun, J., Gu, J., Zeng, J., Han, S., Song, A., & F. Chen.,…. & Chen, S. (2013). Changes in leaf morphology, antioxidant activity and photosynthesis capacity in two different drought-tolerant cultivars of chrysanthemum during and after water stress. Scientia. Horticulturae, 161, 249–258. https://doi.org/10.1016/j.scienta.2013.07.015

    Article  CAS  Google Scholar 

  • Terashima, I., Hanba, Y. T., Tholen, D., & Niinemets, Ü. (2011). Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 155, 108–116. https://doi.org/10.1104/pp.110.165472

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen, M., Grieco, M., Nurmi, M., Rantala, M., Suorsa, M., & Aro, E. M. (2012). Regulation of the photosynthetic apparatus under fluctuating growth light. Philosophical Transactions of the Royal Society b: Biological Sciences, 367(1608), 3486–3493.

    Article  CAS  Google Scholar 

  • Venkatesh, K., Senthilkumar K. M., Mamrutha, H.M., Gyanendra, S., & Singh, G. P. (2022). High-temperature stress in wheat under climate change scenario, effects and mitigation strategies, Climate Change and Crop Stress Molecules to Ecosystems, 209–229

  • Vile, D., Garnier, E., Shipley, B., Laurent, G., Navas, M. L., Roumet, C., Lavorel, S., Diaz, S., Hodgson, J. S., Lloret, F., Midgley, G. F., Poorter, H., Rutherford, M. C., Wilson, P. J., & Wright, I. J. (2005). Specific leaf area and dry matter content estimate thickness in laminar leaves. Annals of Botany, 96, 1129–1136. https://doi.org/10.1093/aob/mci264

    Article  PubMed  PubMed Central  Google Scholar 

  • Waggoner, P. E. (1983). Agriculture and a climate changed by more carbon dioxide. Changing climate (pp. 383–418). National Academy Press.

    Google Scholar 

  • Wardlow, I. F., Sofield, I., & Cartwright, P. M. (1980). Factors limiting the rate of dry matter accumulation in the grains of wheat grown at high temperature. Australian Journal of Plant Physiololgy, 7, 387–400.

    Google Scholar 

  • Wassie, M., Zhang, W., Zhang, Q., Ji, K., Cao, L., & Chen, L. (2020). Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicology Environmental Safety, 191, 110206.

    Article  CAS  PubMed  Google Scholar 

  • Wassmann, R., & Dobermann, A. (2007). Climate change adoption through rice production in regions with high poverty levels. ICRISAT and CGIAR 35th anniversary symposium on climate-proofing innovation for poverty reduction and food security 22–24 November. SAT eJournal, 4, 1–24.

    Google Scholar 

  • Wright, I. J., & Westoby, M. (2002). Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytologist, 155, 403–416.

    Article  PubMed  Google Scholar 

  • **a, M. Y., & Qi, H. X. (2004). Effects of high temperature on the seed setting percent of hybrid rice bred with four male sterile lines. Hubei Agriculture Science, 2, 21–22.

    Google Scholar 

  • **e, X. J., Li, B. B., Zhu, H. X., Yang, S. B., & Shen, S. H. (2012). Impact of high temperature at heading stage on rice photosynthetic characteristic and dry matter accumulation. Chinese Journal of Agrometerology, 33, 457–461.

    Google Scholar 

  • **ong, D., Flexas, J., Yu, T., Peng, S., & Huang, J. (2017). Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. New Phytologist, 213, 572–583.

    Article  CAS  PubMed  Google Scholar 

  • Yagi, K. (1987). Lipid peroxides and human disease. Chemistry and Physics of Lipids, 45(2–4), 335–337.

    Google Scholar 

  • Yamori, W., Nagai, T., & Makino, A. (2011). The rate limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species. Plant Cell Environment, 34, 764–777.

    Article  CAS  PubMed  Google Scholar 

  • Yamori, W., Hikosaka K., & Danielle A., Way (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation Photosynth Res. 119:101–117 https://doi.org/10.1007/s11120-013-9874-6DOI

  • Yan, C., Ding, Y. F., Liu, Z. H., Wang, Q. S., Li, G. H., He, Y., & Wang, S. H. (2008). Temperature difference between the air and organs of rice plant and its relation to spikelet fertility. Agricultural Science, 7, 678–685.

    Google Scholar 

  • Yan, C., Ding, Y., Wang, Q., Li, Z., Liu, G., Muhammad, I., & Wang, S. (2010). The impact of relative humidity, genotypes and fertilizer application rates on panicle, leaf temperature, fertility and seed setting of rice. Journal of Agriculture Science, 148, 329–339. https://doi.org/10.1017/S0021859610000018

    Article  Google Scholar 

  • Yang, H. C., Huang, Z. Q., Jiang, Z. Y., & Wang, X. W. (2004). High temperature damage and its protective technologies of early and middle season rice in Anhui province. Journal of Anhui. Agriculture Science, 32, 3–4.

    Google Scholar 

  • Yin, Y., Li, S., Liao, W., Lu, Q., Wen, X., & Lu, C. (2010). Photosystem II photochemistry, photo inhibition and the xanthophylls cycle in heat- stressed rice leaves. Journal of Plant Physololgy, 167, 959–966.

    Article  CAS  Google Scholar 

  • Way, D.A., & Yamori, W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119, 89–100 https://doi.org/10.1007/s11120-013-9873-7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G. L., Chen, L. Y., Zhang, S. T., Liu, G. H., Tang, W. B., He, Z. Z., & Wang, M. (2007). Effects of high temperature on physiological and biochemical characteristics in flag leaf of rice during heading and flowering period. Scientia Agricultura Sinica, 40, 1345–1352.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the support and guidance rendered by Director, ICAR RC NEH, Umiam, previous principal investigators of NICRA (National innovations on climate resilient agriculture) project and Director and Nodal Principal investigator, CRIDA, Hyderbad, India. The study was funded by NICRA with grant number F.No. 2-2(207)18-19/NICRA

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Methodology: Krishnappa Rangappa, Burhan U Choudhury, Amit Kumar Data acquisition, Formal analysis and investigation: Stutipriya Hazarika, Abhijeeta Nandha, Supriya Debnath, Krishnappa Rangappa, Writing—original draft preparation: Krishnappa Rangappa, Stutipriya Hazarika, Abhijeeta Nandha, Writing -review and editing: Sankar P Das, Gangarani Ayam, Prabha Moirangthem, Jayanta LayekFunding acquisition: Burhan U Choudhury, Vinay K Mishra Resources: Prabha moirangthem, Amit Kumar, Supervision: Krishnappa rangappa, Burhan Uddin Choudhury, Vinay K Mishra. All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Krishnappa Rangappa, Stutipriya Hazarika, Supriya Debnath and Jayanta Layek. The first draft of the manuscript was written by Krishnappa Rangappa, Stutitpriya Hazarika and Abhijeeta Nanda and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Krishnappa Rangappa.

Ethics declarations

Conflict of interest

Authors declare no financial or non financial conflict of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 475 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangappa, K., Choudhury, B.U., Kumar, A. et al. Comparative stress physiological analysis of indigenous rice cultivars of Eastern Himalayan Region under elevated temperature of changing climate. Plant Physiol. Rep. (2024). https://doi.org/10.1007/s40502-024-00796-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40502-024-00796-2

Keywords

Navigation