Log in

Impact evaluation of bare and chitosan complexed silver nanoparticles on the growth of Sorghum bicolor (L.) Moench and soil bacterial diversity

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Silver nanoparticles (Ag NPs) are utilised mainly as bio-stimulants to elevate plant growth; however, they may be toxic due to their oxidative behaviour. Nanocomposites (NCPs) of Ag with chitosan (CS/Ag NCPs), which combine the beneficial properties of both, can considerably alleviate this issue. In the present study, the effect of unmodified (bare Ag NPs: size 4–8 nm) and chitosan-modified Ag NPs (CS/Ag NCPs: size 7–14 nm) in supporting the growth of Sorghum bicolor (L.) was tested on 30 days old plants by growing them in soil spiked with two different concentrations (100 and 200 ppm) of nanomaterials. Both Ag NPs and CS/Ag NCPs positively influence the growth of S. bicolor; however, higher growth and root protein contents, increased amounts of nitrogen and phosphorous and lower malondialdehyde (MDA) contents in presence of 200 ppm CS/Ag NCPs suggested their superiority over control and Ag NPs treated plants. In contrast to CS/Ag NCPs treated plants, Ag NPs treated plants accumulated more Ag, which may be correlated with higher MDA levels in their shoots. However, plants exposed to 200 ppm of Ag NPs also had the highest levels of starch, cellulose, magnesium and potassium. Both nanomaterials improved the number of phosphate-solubilising bacteria, Azotobacter species and Azospirillum species, which improved the uptake of nutrients by the treated plants. The results demonstrated the safety of both nanomaterials and the superiority of CS/Ag NCPs over Ag NPs for their application as growth-promoting agents for S. bicolor and future investigation into their potential for use in nanobiotechnological applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All data included in the manuscript was generated during the study.

Code availability

Not applicable.

References

  • Aebi, H. E. (1983). Catalase. In H. U. Bergmeyer (Ed.), Methods of Enzymatic Analysis (Vol. 3, pp. 273–286). Weinhem: Verlag Chemie.

    Google Scholar 

  • Al-Huqail, A. A., Hatata, M. M., Al-Huqail, A. A., & Ibrahim, M. M. (2018). Preparation, characterisation of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi Journal of Biological Sciences, 25, 313–319.

    Article  CAS  PubMed  Google Scholar 

  • Ali, S. W., Joshi, M., & Rajendran, S. (2010). Modulation of size, shape and surface charge of chitosan nanoparticles with reference to antimicrobial activity. Advanced Science Letters, 3, 452–460.

    Article  CAS  Google Scholar 

  • Anusuya, S., & Banu, K. N. (2016). Silver-chitosan nanoparticles induced biochemical variations of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology, 8, 39–44.

    Article  CAS  Google Scholar 

  • Arjunan, N., Kumari, H. L., Singaravelu, C. M., Kandasamy, R., & Kandasamy, J. (2016). Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent. International Journal of Biological Macromolecules, 92, 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brookbank, B. P., Patel, J., Gazzarrini, S., & Nambara, E. (2021). Role of basal ABA in plant growth and development. Genes, 12, 1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das, P., Barua, S., Sarkar, S., Karak, N., Bhattacharyya, P., Raza, N., Kim, K., & Bhattacharya, S. S. (2018). Plant extract–mediated green silver nanoparticles: Efficacy as soil conditioner and plant growth promoter. Journal of Hazardous Materials, 346, 62–72.

    Article  CAS  PubMed  Google Scholar 

  • Dhindsa, R. S., Plumb-Dhindsa, P., & Throne, T. A. (1981). Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93–101.

    Article  CAS  Google Scholar 

  • Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R., & Anderson, A. J. (2013). Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environmental Science and Technology, 47, 1082–1090.

    Article  CAS  PubMed  Google Scholar 

  • Divya, K., Thampi, M., Vijayan, S., Shabanamol, S., & Jisha, M. S. (2022). Chitosan nanoparticles as a rice growth promoter: Evaluation of biological activity. Archives of Microbiology, 204, 1–11.

    Article  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Govindan, S., Nivethaa, E. A. K., Saravanan, R., Narayanan, V., & Stephen, A. (2012). Synthesis and characterisation of chitosan–silver nanocomposite. Applied Nanoscience, 2, 299–303.

    Article  CAS  Google Scholar 

  • Gruyer, N., Dorais, M., Bastien, C., Dassylva, N., & Triffault-Bouchet, G. (2013). Interaction between silver nanoparticles and plant growth. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant, 1037, 795–800.

    Google Scholar 

  • Gupta, S. D., Agarwal, A., & Pradhan, S. (2018). Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicology and Environmental Safety, 161, 624–633.

    Article  CAS  PubMed  Google Scholar 

  • Hatami, M., & Ghorbanpour, M. (2013). Effect of nanosilver on physiological performance of pelargonium plants exposed to dark storage. Journal of Horticultural Research, 21, 15–20.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Ingle, P. U., Shende, S. S., Shingote, P. R., Mishra, S. S., Sarda, V., Wasule, D. L., Rajput, V. D., Minkina, T., Rai, M., Sushkova, S., Mandzhieva, S., & Gade, A. (2022). Chitosan nanoparticles (ChNPs): A versatile growth promoter in modern agricultural production. Heliyon, 8, e11893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janku, M., Luhova, L., & Petrivalsky, M. (2019). On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants, 8, 105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasim, B., Thomas, R., Mathew, J., & Radhakrishnan, E. K. (2017). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 25, 443–447.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, H. S., Qiu, X. N., Li, G. B., Li, W., & Yin, L. Y. (2014). Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environmental Toxicology and Chemistry, 33, 1394–1405.

    Article  Google Scholar 

  • Kaur, P., Duhan, J. S., & Thakur, R. (2018). Comparative pot studies of chitosan and chitosan-metal nanocomposites as nano-agrochemicals against fusarium wilt of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology, 14, 466–471.

    Article  Google Scholar 

  • Krishnaraj, C., Jagan, E. G., Ramachandran, R., Abirami, S. M., Mohan, N., & Kalaichelvan, P. T. (2012). Effect of biologically synthesised silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochemistry, 47, 651–658.

    Article  CAS  Google Scholar 

  • Kumar, M., & Turner, S. (2015). Protocol: A medium-throughput method for determination of cellulose content from single stem pieces of Arabidopsis thaliana. Plant Methods, 11, 1–8.

    Article  Google Scholar 

  • Kumar, R., Sharma, P., Gupta, R. K., Kumar, S., Sharma, M. M. M., Singh, S., & Pradhan, G. (2020). Earthworms for eco-friendly resource efficient agriculture. Resources use efficiency in agriculture (pp. 47–84). Singapore: Springer.

    Chapter  Google Scholar 

  • Kumar-Krishnan, S., Prokhorov, E., Hernandez-Iturriaga, M., Mota-Morales, J. D., Vazquez-Lepe, M., Kovalenko, Y., Sanchez, I. C., & Luna-Barcenas, G. (2015). Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. European Polymer Journal, 67, 242–251.

    Article  CAS  Google Scholar 

  • Lastdrager, J., Hanson, J., & Smeekens, S. (2014). Sugar signals and the control of plant growth and development. Journal of Experimental Botany, 65, 799–807.

    Article  CAS  PubMed  Google Scholar 

  • Latif, H. H., Ghareib, M., & Abu, T. M. (2017). Phytosynthesis of silver nanoparticles using leaf extracts from Ocimum basilicum and Mangifera indica and their effect on some biochemical attributes of Triticum aestivum. Gesunde Pflanzen, 69, 39–46.

    Article  CAS  Google Scholar 

  • Latif, U., Al-Rubeaan, K., & Saeb, A. T. (2015). A review on antimicrobial chitosan-silver nanocomposites: A roadmap toward pathogen targeted synthesis. International Journal of Polymeric Materials and Polymeric Biomaterials, 64, 448–458.

    Article  CAS  Google Scholar 

  • Lee, W. M., Kwak, J. I., & An, Y. J. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere, 86, 491–499.

    Article  CAS  PubMed  Google Scholar 

  • Maity, A., Natarajan, N., Pastor, M., Vijay, D., Gupta, C. K., & Wasnik, V. K. (2018). Nanoparticles influence seed germination traits and seed pathogen infection rate in forage sorghum (Sorghum bicolor) and Cowpea (Vigna unguiculata). Indian Journal of Experimental Biology, 56, 363–372.

    CAS  Google Scholar 

  • Mallikarjuna, K., Narasimha, G., Dillip, G. R., Praveen, B., Shreeshar, B., Sree, L. C., Reddy, B. V. S., & Deva, P. R. B. (2011). Green synthesis of silver nanoparticles using Ocimum sanctum leaf extract and their characterisation. Digest Journal of Nanomaterials and Biostructures, 6, 181–186.

    Google Scholar 

  • Maruthupandy, M., Rajivgandhi, G., Muneeswaran, T., Vennila, T., Quero, F., & Song, J. M. (2019). Chitosan/silver nanocomposites for colorimetric detection of glucose molecules. International Journal of Biological Macromolecules, 121, 822–828.

    Article  CAS  PubMed  Google Scholar 

  • Mylona, Z., Panteris, E., Kevrekidis, T., & Malea, P. (2020a). Silver nanoparticle toxicity effect on the seagrass Halophila stipulacea. Ecotoxicology and Environmental Safety, 189, 109925.

    Article  CAS  PubMed  Google Scholar 

  • Mylona, Z., Panteris, E., Moustakas, M., Kevrekidis, T., & Malea, P. (2020b). Physiological, structural and ultrastructural impacts of silver nanoparticles on the seagrass Cymodocea nodosa. Chemosphere, 248, 126066.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Nithya, A., JeevaKumari, H. L., Rokesh, K., Ruckmani, K., Jeganathan, K., & Jothivenkatachalam, K. (2015). A versatile effect of chitosan-silver nanocomposite for surface plasmonic photocatalytic and antibacterial activity. Journal of Photochemistry and Photobiology b: Biology, 153, 412–422.

    Article  CAS  PubMed  Google Scholar 

  • Oh, J. W., Chun, S. C., & Chandrasekaran, M. (2019). Preparation and in vitro characterisation of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy, 9, 21.

    Article  CAS  Google Scholar 

  • Pallavi, C. M. M., Srivastava, R., Arora, S., & Sharma, A. K. (2016). Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. Biotech, 6, 1–10.

    Google Scholar 

  • Ramezani, M., Gerami, M., & Majlesi, Z. (2019). Comparison between various concentrations of commercial and synthesised silver nanoparticles on biochemical parameters and growth of Stevia rebaudiana B. Plant Physiology Reports, 24, 141–152.

    Article  CAS  Google Scholar 

  • Rani, N., Kumari, K., Sangwan, P., Barala, P., Yadav, J. V. R., & Hooda, V. (2022). Nano-iron and nano-zinc induced growth and metabolic changes in Vigna radiata. Sustainability, 14, 8251.

    Article  CAS  Google Scholar 

  • Rinaldi, F., Favero, D. E., Moeller, J., Hanieh, P. N., Passeri, D., Rossi, M., Angeloni, L., Venditti, I., Marianecci, C., Carafa, M., & Fratoddi, I. (2019). Hydrophilic silver nanoparticles loaded into niosomes: Physical-chemical characterisation in view of biological applications. Nanomaterials, 9, 1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadak, M. S. (2019). Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bulletin of the National Research Centre, 43, 1–6.

    Article  Google Scholar 

  • Saharan, V., Kumaraswamy, R. V., Choudhary, R. C., Kumari, S., Pal, A., Raliya, R., & Biswas, P. (2016). Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maise by mobilising reserved food. Journal of Agricultural and Food Chemistry, 64, 6148–6155.

    Article  CAS  PubMed  Google Scholar 

  • Saharan, V., Mehrotra, A., Khatik, R., Rawal, P., Sharma, S. S., & Pal, A. (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules, 62, 677.

    Article  CAS  PubMed  Google Scholar 

  • Salachna, P., Byczynska, A., Zawadzinska, A., Piechocki, R., & Mizielińska, M. (2019). Stimulatory effect of silver nanoparticles on the growth and flowering of potted oriental lilies. Agronomy, 9, 610.

    Article  CAS  Google Scholar 

  • Sathiyabama, M., & Manikandan, A. (2021). Foliar application of chitosan nanoparticle improves yield, mineral content and boost innate immunity in finger millet plants. Carbohydrate Polymers, 258, 117691.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., Bhatt, D., Zaidi, M. G. H., Saradhi, P. P., Khanna, P. K., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167, 2225–2233.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., Sharma, P., Kumari, A., Kumar, R., & Pathak, D. V. (2019). Management of root-knot nematode in different crops using microorganisms. Plant Biotic Interactions (pp. 85–99). Cham: Springer.

    Chapter  Google Scholar 

  • Thakur, K., Khurana, N., Rani, N., & Hooda, V. (2021). Enhanced growth and antioxidant efficiency of Vigna radiata seedlings in the presence of titanium dioxide nanoparticles synthesised via the sonochemical method. Israel Journal of Plant Sciences, 69, 25–42.

    Article  Google Scholar 

  • Thamilarasan, V., Sethuraman, V., Gopinath, K., Balalakshmi, C., Govindarajan, M., Mothana, R. A., Siddiqui, N. A., Khaled, J. M., & Benelli, G. (2018). Single step fabrication of chitosan nanocrystals using Penaeus semisulcatus: Potential as new insecticides, antimicrobials and plant growth promoters. Journal of Cluster Science, 29, 375–384.

    Article  CAS  Google Scholar 

  • Thiruvengadam, M., Gurunathan, S., & Chung, I. M. (2015). Physiological, metabolic and transcriptional effects of biologically synthesised silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma, 252, 1031–1046.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, S., Mehrotra, G. K., & Dutta, P. K. (2011). Chitosan-silver oxide nanocomposite film: Preparation and antimicrobial activity. Bulletin of Materials Science, 34, 29–35.

    Article  CAS  Google Scholar 

  • Van, S. N., Minh, H. D., & Anh, D. N. (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in greenhouse. Biocatalysis and Agricultural Biotechnology, 2, 289–294.

    Article  Google Scholar 

  • Vannini, C., Domingo, G., Onelli, E., Prinsi, B., Marsoni, M., Espen, L., & Bracale, M. (2013). Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE, 8, e68752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Koo, Y., Alexander, A., Yang, Y., Westerhof, S., Zhang, Q., Schnoor, J. L., Colvin, V. L., Braam, J., & Alvarez, P. J. (2013). Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environmental Science & Technology, 47, 5442–5449.

    Article  CAS  Google Scholar 

  • Yan, A., & Chen, Z. (2019). Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. International Journal of Molecular Sciences, 20, 1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Jiang, F., Ma, C., Rui, Y., Rui, M., Adeel, M., Cao, W., & **ng, B. (2018). Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study. Journal of Agricultural and Food Chemistry, 66, 2589–2597.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Wang, D., Geetha, N., Khawar, K. M., Jogaiah, S., & Mujtaba, M. (2021). Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydrate Polymers, 261, 117904.

    Article  CAS  PubMed  Google Scholar 

  • Ziotti, A. B. S., Ottoni, C. A., Correa, C. N., de Almeida, O. J. G., de Souza, A. O., & Neto, M. C. L. (2021). Differential physiological responses of a biogenic silver nanoparticle and its production matrix silver nitrate in Sorghum bicolor. Environmental Science and Pollution Research, 28, 32669–32682.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from DST, New Delhi (FIST Grant No. SR/FST/LS1-529/2012(C)) and HSCSIT, Panchkula, Haryana (Endst. No. HSCSIT/R&D/2020/474).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design involved inputs from Vinita Hooda and Neelam. All authors did the literature survey. Neelam Rani did the experimental work and collected the data. Neelam Rani and Kusum carried out the statistical analysis of the data. Neelam Rani prepared all graphs and wrote the original manuscript draft, while Vinita Hooda read, revised, and finalised it. All the authors approved the final manuscript.

Corresponding author

Correspondence to Vinita Hooda.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest.

Ethics approval

There are no studies that used humans or animals as subjects in this article.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, N., Kumari, K. & Hooda, V. Impact evaluation of bare and chitosan complexed silver nanoparticles on the growth of Sorghum bicolor (L.) Moench and soil bacterial diversity. Plant Physiol. Rep. 29, 316–331 (2024). https://doi.org/10.1007/s40502-023-00774-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-023-00774-0

Keywords

Navigation