Log in

Chlamydomonas as a model system for studying the relevance of plant genes for their involvement in multiple individual and combined stresses: a study unravelling PgCuZnSOD and PgAPX gene functions

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

The reactive oxygen species (ROS) including superoxide (O2−), hydrogen peroxide (H2O2), and singlet oxygen (O2−), are the main molecules produced in excessive amounts under stress conditions, leading to cellular damage in plants. These ROS molecules should be effectively removed to impart stress tolerance. Enzymatic scavengers like superoxide dismutase, catalase, and peroxidases plays a significant role in scavenging ROS molecules. However, the functional validation of such genes cloned from hardy crops are very much limited. The present research demonstrates the synergistic effect of co-expressing multiple antioxidant genes encoding copper-zinc superoxide dismutase (Cu/Zn-SOD) and ascorbate peroxidase cloned from hardy crop Pennisetum glaucum to improve single and combined abiotic stress tolerance and also corroborates Chlamydomonas as a valuable model system for functional validation of multi genes, especially for understanding combined stress responses due to its rapid transformation process and molecular similarity to higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  • Bazzani, E., Lauritano, C., Mangoni, O., Bolinesi, F., & Saggiomo, M. (2021). Chlamydomonas responses to salinity stress and possible biotechnological exploitation. Journal of Marine Science and Engineering, 9(11), 1242.

    Article  Google Scholar 

  • Blaby, I. K., & Blaby-Haas, C. E. (2017). Genomics and functional genomics in Chlamydomonas reinhardtii. Chlamydomonas Molecular Genetics and Physiology, 2017, 1–26.

    Google Scholar 

  • Cheng, Y., & Song, C. (2006). Hydrogen peroxide homeostatis and signaling in plant cells. Science in China Series C Life Sciences-English Edition, 49(1), 1.

    CAS  Google Scholar 

  • Gupta, A. S., Heinen, J. L., Holaday, A. S., Burke, J. J., & Allen, R. D. (1993). Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proceedings of the National Academy of Sciences, 90(4), 1629–1633.

    Article  CAS  Google Scholar 

  • Harris, E. H. (2009). The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and Its Laboratory Use. Academic press.

    Google Scholar 

  • Hema, R., Senthil-Kumar, M., Shivakumar, S., Chandrasekhara Reddy, P., & Udayakumar, M. (2007). Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. Planta, 226, 655–670.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S. V., Misquitta, R. W., Reddy, V. S., Rao, B. J., & Rajam, M. V. (2004). Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Science, 166(3), 731–738.

    Article  CAS  Google Scholar 

  • Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological Bulletin, 133(1), 25.

    Article  PubMed  Google Scholar 

  • Mishra, N., Jiang, C., Chen, L., Paul, A., Chatterjee, A., & Shen, G. (2023). Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Frontiers in Plant Science, 14, 1110622.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Mohandass, S., Ragavan, M., Gnanasekaran, D., Lakshmanan, U., Dharmar, P., & Saha, S. K. (2021). Overexpression of Cu/Zn superoxide dismutase (Cu/Zn SOD) in Synechococcus elongatus PCC 7942 for enhanced azo dye removal through hydrogen peroxide accumulation. Biology, 10(12), 1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Njus, D., Kelley, P. M., Tu, Y. J., & Schlegel, H. B. (2020). Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radical Biology and Medicine, 159, 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey, P., Patil, M., Priya, P., & Senthil-Kumar, M. (2023). When two negatives make a positive: The favorable impact of the combination of abiotic stress and pathogen infection on plants. Journal of Experimental Botany, 21, erad413. https://doi.org/10.1093/jxb/erad413

    Article  Google Scholar 

  • Pratheesh, P. T., Vineetha, M., & Kurup, G. M. (2014). An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Molecular Biotechnology, 56, 507–515.

    Article  CAS  PubMed  Google Scholar 

  • Priya, P., Patil, M., Pandey, P., Singh, A., Babu, V., & Senthil-Kumar, M. (2023). Stress Combinations and their Interactions in Plants Database: A one-stop resource on combined stress responses in plants. The Plant Journal. https://doi.org/10.1111/tpj.16497

    Article  PubMed  Google Scholar 

  • Ramu, V. S., Paramanantham, A., Ramegowda, V., Mohan-Raju, B., Udayakumar, M., & Senthil-Kumar, M. (2016). Transcriptome analysis of sunflower genotypes with contrasting oxidative stress tolerance reveals individual-and combined-biotic and abiotic stress tolerance mechanisms. PLoS ONE, 11(6), e0157522.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sae-Tang, P., Hihara, Y., Yumoto, I., Orikasa, Y., Okuyama, H., & Nishiyama, Y. (2016). Overexpressed superoxide dismutase and catalase act synergistically to protect the repair of PSII during photoinhibition in Synechococcus elongatus PCC 7942. Plant and Cell Physiology, 57(9), 1899–1907.

    Article  PubMed  Google Scholar 

  • Schroda, M., Beck, C. F., & Vallon, O. (2002). Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. The Plant Journal, 31(4), 445–455.

    Article  CAS  PubMed  Google Scholar 

  • Shafi, A., Chauhan, R., Gill, T., Swarnkar, M. K., Sreenivasulu, Y., Kumar, S., & Singh, A. K. (2015). Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Molecular Biology, 87, 615–631.

    Article  CAS  PubMed  Google Scholar 

  • Valderrama, R., Corpas, F. J., Carreras, A., Gómez-Rodríguez, M. V., Chaki, M., Pedrajas, J. R., Fernandez-Ocana, A. N., Del Rio, L. A., & Barroso, J. B. (2006). The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environment, 29(7), 1449–1459.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Liu, Q., Liu, Y., Li, G., **a, G., & Wang, M. (2021). Ectopic expression of a wheat superoxide dismutase gene TaSOD5 enhances salt and oxidative stress tolerance in Arabidopsis. Biologia Plantarum, 65, 19–26.

    Article  CAS  Google Scholar 

  • Yoshimura, K., Miyao, K., Gaber, A., Takeda, T., Kanaboshi, H., Miyasaka, H., & Shigeoka, S. (2004). Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. The Plant Journal, 37(1), 21–33.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Zhang, L., Fan, J., & Han, S. (2007). Neural basis of cultural influence on self-representation. NeuroImage, 34(3), 1310–1316.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Dr. MK Reddy, ICGEB, New Delhi for providing the gene construct and the late Dr. M. Udayakumar for his guidance and support during research.

Author information

Authors and Affiliations

Authors

Contributions

HMM and NNK conceived and designed the research with HR. HMM, GG, SRS, and LAN conducted the experiments. HMM, GG, SM, SRS and LAN wrote the manuscript. MS-K and NK edited the manuscript. All authors read and approved the manuscript for publication.

Corresponding authors

Correspondence to H. M. Mamrutha or Karaba N. Nataraja.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamrutha, H.M., Govind, G., Ramanna, H. et al. Chlamydomonas as a model system for studying the relevance of plant genes for their involvement in multiple individual and combined stresses: a study unravelling PgCuZnSOD and PgAPX gene functions. Plant Physiol. Rep. 29, 176–185 (2024). https://doi.org/10.1007/s40502-023-00765-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-023-00765-1

Keywords

Navigation