Log in

sRNA and epigenetic mediated abiotic stress tolerance in plants

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Plant small RNAs are important regulators of gene expression involved in epigenetic processes under abiotic and biotic stresses. To minimize the stress influence, specific changes in gene expression are induced that could be epigenetically (without changing DNA sequence) fixed and passed into off springs forming epigenetic memories. sRNAs are crucial regulators of endogenous gene expression at both transcriptional and post transcriptional levels. The use of high throughput sequencing techniques, bioinformatics and computational tools lead to identification and characterization of various stress associated sRNAs and their target genes in plants. This review focuses on various epigenetic processes involved stress response and the roles of various sRNAs involved in abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agius, F., Kapoor, A., & Zhu, J. K. (2006). Role of the arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proceedings of the National Academy of Sciences, 103, 11796–11801.

    Article  CAS  Google Scholar 

  • Akdogan, G., Tufekci, E. D., Uranbey, S., & Unver, T. (2015). miRNA-based drought regulation in wheat. Functional & Integrative Genomics, 16, 221–233.

    Article  CAS  Google Scholar 

  • Ambros, V. (2004). The functions of animal microRNAs. Nature, 431, 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Arenas-Huertero, C., Perez, B., Rabanal, F., Blanco-Melo, D., De la Rosa, C., Estrada-Navarrete, G., et al. (2009). Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Molecular Biology, 70, 385–401.

    Article  CAS  PubMed  Google Scholar 

  • Aufsatz, W., Mette, M. F., van der Winden, J., Matzke, M., & Matzke, A. J. M. (2002). HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. The EMBO Journal, 21, 6832–6841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bari, R., Datt Pant, B., Stitt, M., & Scheible, W. R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology, 141, 988–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartee, L., Malagnac, F., & Bender, J. (2001). Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes & Development, 15, 1753–1758.

    Article  CAS  Google Scholar 

  • Bartel, D. P. (2004). Micro RNAs: Genomics, biogenesis, mechanism and function. Cell, 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe, D. (2004). RNA silencing in plants. Nature, 431, 356–363.

    Article  CAS  PubMed  Google Scholar 

  • Bellutti, F., Kauer, M., Kneidinger, D., Lion, T., & Klein, R. (2015). Identification of RISC-associated adenoviral microRNAs, a subset of their direct targets, and global changes in the targetome upon lytic adenovirus 5 infection. Journal of Virology, 89(3), 1608–1627.

    Article  PubMed  CAS  Google Scholar 

  • Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R., & Zhu, J. K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123(7), 1279–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottino, M. C., Rosario, S., Grativol, C., Thiebaut, F., Rojas, C. A., Farrineli, L., et al. (2013). High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One, 8, e59423. https://doi.org/10.1371/journal.pone.0059423.

    Article  Google Scholar 

  • Budak, H., Kantar, M., Bulut, R., & Akpinar, B. A. (2015). Stress responsive miRNAs and isomiRs in cereals. Plant science, 235, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Cao, X., & Jacobsen, S. (2002a). Locus-specific control of asymmetric and CpNpG methylation by the DRN and CMT3 methyltransferase genes. Proceedings of National Academy of Sciences, 4, 16491–16498.

    Article  CAS  Google Scholar 

  • Cao, X., & Jacobsen, S. E. (2002b). Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Current Biology, 12, 1138–1144.

    Article  CAS  PubMed  Google Scholar 

  • Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136, 642–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z. H., Bao, M. L., Sun, Y. Z., Yang, Y. J., Xu, X. H., Wang, J. H., et al. (2011). Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis. Plant Molecular Biology, 77, 619–629.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., Luan, Y., & Zhai, J. (2015). Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Reports, 34, 2013–2025.

    Article  CAS  PubMed  Google Scholar 

  • Chiou, T. J., Aung, K., Lin, S. I., Wu, C. C., Chiang, S. F., & Su, C. L. (2006). Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell, 18, 412–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., & Zheng, Y. (2009). Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany, 103(1), 29–38.

    Article  CAS  PubMed  Google Scholar 

  • Eldem, V., Akcay, U. C., Ozhuner, E., Bakir, Y., Uranbey, S., & Unver, T. (2012). Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One, 7(12), e50298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahlgren, N., Howell, M. D., & Kasschau, K. D. (2007). High throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2, e219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang, Y., **e, K., & **ong, L. (2014). Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. Journal of Experimental Botany, 65, 2119–2135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnegan, E. J., & Kovac, K. A. (2000). Plant DNA methyltransferases. Plant Molecular Biology, 43(2–3), 189–201.

    Article  CAS  PubMed  Google Scholar 

  • Finnegan, E. J., & Matzke, M. A. (2003). The small RNA world. Journal of Cell Science, 116, 4689–4693.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, H., Chiou, T. J., Lin, S. I., Aung, K., & Zhu, J. K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Current Biology, 15, 2038–2043.

    Article  CAS  PubMed  Google Scholar 

  • Gentile, A., Dias, L. I., Mattos, R. S., Ferreira, T. H., & Menossi, M. (2015). MicroRNAs and drought responses in sugarcane. Frontiers in Plant Science, 6, 58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gifford, M. L., Dean, A., Gutierrez, R. A., Coruzzi, G. M., & Birnbaum, K. D. (2008). Cell specific nitrogen responses mediated developmental plasticity. Proceedings of the National Academy of Sciences, 105, 803–808.

    Article  CAS  Google Scholar 

  • Gilmour, S. J., Zarka, D. G., Stockinger, E. J., Salazar, M. P., Houghton, J. M., & Thomashow, M. F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant Journal, 16(4), 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Gottesman, S. (2005). Micros for microbes: Non-coding regulatory RNAs in bacteria. Trends in Genetics, 21, 399–404.

    Article  CAS  PubMed  Google Scholar 

  • Guan, Q., Lu, X., Zeng, H., Zhang, Y., & Zhu, J. (2013). Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant Journal, 74, 840–851.

    Article  CAS  PubMed  Google Scholar 

  • Hajyzadeh, M., Turktas, M., Khawar, K. M., & Unver, T. (2015). miR408 overexpression causes increased drought tolerance in chickpea. Gene, 555, 186–193.

    Article  CAS  PubMed  Google Scholar 

  • He, H., Liang, G., Li, Y., Wang, F., & Yu, D. (2014). Two young MicroRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in Arabidopsis thaliana. Plant Physiology, 164, 853–865.

    Article  CAS  PubMed  Google Scholar 

  • Hu, B., Zhu, C., Li, F., Tang, J., Wang, Y., Lin, A., et al. (2011). LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiology, 156, 1101–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias, M. J., Terrile, M. C., Windels, D., Lombardo, M. C., Bartoli, C. G., Vazquez, F., et al. (2014). MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS ONE, 9, e107678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jagadeeswaran, G., Saini, A., & Sunkar, R. (2009). Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta, 229(4), 1009–1014.

    Article  CAS  PubMed  Google Scholar 

  • Jain, M., Nijhawan, A., Arora, R., Agarwal, P., Ray, S., Sharma, P., et al. (2007). F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiology, 143, 1467–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian, H., Wang, J., Wang, T., Wei, L., Li, J., & Liu, L. (2016). Identification of rapeseed microRNAs involved in early stage seed germination under salt and drought stresses. Frontiers in Plant Science, 7, 658.

    PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 14, 787–799.

    Article  CAS  PubMed  Google Scholar 

  • Jung, H. J., & Kang, H. (2007). Expression and functional analysis of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiology and Biochemistry, 45, 805–811.

    Article  CAS  PubMed  Google Scholar 

  • Kamthan, A., Chaudhuri, A., Kamthan, M., & Datta, A. (2015). Small RNAs in plants: Recent development and application for crop improvement. Frontiers in plant science, 6, 208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kankel, M. W., Ramsey, D. E., Stokes, T. L., Flowers, S. K., Haag, J. R., Jeddeloh, J. A., et al. (2003). Arabidopsis MET1 cytosine methyltransferase mutants. Genetics, 163, 1109–1122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kantar, M., Lucas, S., & Budak, H. (2011). miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 233, 471–484.

    Article  CAS  PubMed  Google Scholar 

  • Kantar, M., Unver, T., & Budak, H. (2010). Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Functional & Integrative Genomics, 10(4), 493–507.

    Article  CAS  Google Scholar 

  • Kawashima, C. G., Matthewman, C. A., Huang, S. Q., Lee, B. R., Yoshimoto, N., Koprivova, A., et al. (2011). Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Journal of Plant, 66, 863–876.

    Article  CAS  Google Scholar 

  • Kawashima, C. G., Yoshimoto, N., Maruyama-Nakashita, A., Tsuchiya, Y. N., Saito, K., Takahashi, H., et al. (2009). Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant Journal, 57, 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Kepinski, S., & Leyser, O. (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 435(7041), 446–451.

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh, B., Zhu, J. K., & Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plant. Biochimica et Biophysica Acta, 1819, 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M., Manabe, K., Abe, T., Yoshida, S., Matsui, M., & Yamamoto, Y. Y. (2003). Analysis of hydrogen peroxide-independent expression of the high-light-inducible ELIP2 gene with the aid of the ELIP2 promoter–luciferase fusions. Journal of Photochemistry and Photobiology, 77, 668–674.

    Article  CAS  Google Scholar 

  • Kruszka, K., Pacak, A., Swida-Barteczka, A., Nuc, P., Alaba, S., Wroblewska, Z., et al. (2014). Transcriptionally and posttranscriptionally regulated micro RNAs in heat stress response in barley. Journal of Experimental Botany, 65, 6123–6135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Dong, Y., Yin, H., Wang, N., Yang, J., Liu, X., et al. (2011a). Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biology, 11, 170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, W. X., Oono, Y., Zhu, J., He, X. J., Wu, J. M., Iida, K., et al. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post transcriptionally to promote drought resistance. Plant Cell, 20, 2238–2251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, B., Qin, Y., Duan, H., Yin, W., & **a, X. (2011b). Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. Journal of Experimental Botany, 62, 3765–3779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, G., Yang, F., & Yu, D. (2010). MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant Journal, 62, 1046–1057.

    CAS  PubMed  Google Scholar 

  • Liu, H. H., Tian, X., Li, Y. J., Wu, C. A., & Zheng, C. C. (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 14, 836–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, S., Sun, Y. H., Shi, R., Clark, C., Li, L., & Chiang, V. L. (2005). Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 17, 2186–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallory, Vaucheret. (2006). Functions of plant microRNAs and related small RNAs. Nature Genetics, 38, S31–S33.

    Article  CAS  PubMed  Google Scholar 

  • Mallory, A. C., Dugas, D. V., Bartel, D. P., & Bartel, B. (2004). MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Current Biology, 14, 1035–1046.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R. (2002). Oxidative stress antioxidants and stress tolerance. Trends in Plant Sciences, 7(9), 405–410.

    Article  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Sciences, 9, 490–498.

    Article  CAS  Google Scholar 

  • Moldovan, D., Spriggs, A., Yang, J., Pogson, B. J., Dennis, E. S., & Wilson, I. W. (2010). Hypoxia responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. Journal of Experimental Botany, 61(1), 165–177.

    Article  CAS  PubMed  Google Scholar 

  • Morales-Ruiz, T., Ortega-Galisteo, A. P., Ponferrada-Marin, M. I., MartinezMacias, M. I., Ariza, R. R., & Roldan-Arjona, T. (2006). Demeter and Repressor of scilncing 1 encode 5-methylcytosine DNA glycosylases. Proceedings of National Academy of Science, 103, 6853–6858.

    Article  CAS  Google Scholar 

  • Morita, T., Mochizuki, Y., & Aiba, H. (2006). Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction. Proceedings of the National Academy of Sciences, 103, 4858–4863.

    Article  CAS  Google Scholar 

  • Mourrain, P., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J. B., et al. (2000). Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 101(5), 533–542.

    Article  CAS  PubMed  Google Scholar 

  • Mylne, J. S., Barrett, L., Tessadori, F., Mesnage, S., Johnson, L., Bernatavichute, Y. V., et al. (2006). LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proceedings of the National Academy of Sciences, 103, 5012–5017.

    Article  CAS  Google Scholar 

  • Nezhadahmadi, A., Prodhan, Z. H., & Faruq, G. (2013). Drought tolerance in wheat. Scientific World Journal. https://doi.org/10.1155/2013/610721.

    Google Scholar 

  • Pandey, R., Joshi, G., Bhardwaj, A. R., Agarwal, M., & Katiyar-Agarwal, S. (2014). A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS ONE, 9, e95800. https://doi.org/10.1371/journal.pone.0095800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pant, B. D., Buhtz, A., Kehr, J., & Scheible, W. R. (2008). MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant Journal, 53, 731–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papa, C. M., Springer, N. M., Muszynski, M. G., Meeley, R., & Kaeppler, S. M. (2001). Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation. Plant Cell, 13(8), 1919–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penterman, J., Zilberman, D., Huh, J. H., Ballinger, T., Henikoff, S., & Fischer, R. L. (2007). DNA demethylation in the Arabidopsis genome. Proceedings of the National Academy of Sciences, 104, 6752–6757.

    Article  CAS  Google Scholar 

  • Ren, Y., Chen, L., Zhang, Y., Kang, X., Zhang, Z., & Wang, Y. (2012). Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Functional & Integrative Genomics, 12, 327–339.

    Article  CAS  Google Scholar 

  • Reyes, J. L., & Chua, N. H. (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant Journal, 49, 592–606.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, M., Canales, E., & Borras Hidalgo, O. (2005). Molecular aspects of abiotic stress in plants. Biotecnolgia Aplicada, 22, 1–10.

    CAS  Google Scholar 

  • Ruiz-Ferrer, V., & Voinnet, O. (2009). Roles of plant small RNAs in biotic stress responses. Annual Review of Plant Biology, 60, 485–510.

    Article  CAS  PubMed  Google Scholar 

  • Sanousi, R. S. E., Hamza, N. B., Abdelmula, A. A., Mohammed, I. A., Gasim, S. M., & Mishra, N. (2016). Differential expression of miRNAs in Sorghum bicolor under drought and salt stress. American Journal of Plant Sciences, 7, 870–878.

    Article  CAS  Google Scholar 

  • Schauer, S. E., Jacobsen, S. E., Meinke, D. W., & Ray, A. (2002). DICER-LIKE1: Blind men and elephantsn in Arabidopsis development. Trends in Plant Sciences, 7(11), 487–491.

    Article  CAS  Google Scholar 

  • Shaked, H., Avivi-Ragolsky, N., & Levy, A. A. (2006). Involvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination. Genetics, 173, 985–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuai, P., Liang, D., Zhang, Z., Yin, W., & **a, X. (2013). Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics, 14, 233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, K. B., Foley, R. C., & Onate-Sanchez, L. (2002). Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 5, 430–436.

    Article  CAS  PubMed  Google Scholar 

  • Song, J. B., Gao, S., Sun, D., Li, H., Shu, X. X., & Yang, Z. M. (2013). miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC Plant Biology, 13, 210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stief, A., Altmann, S., Hoffmann, K., Pant, B. D., Scheible, W. R., & Baurle, I. (2014). Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell, 26, 1792–1807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar, R., Chinnusamy, V., Zhu, J. H., & Zhu, J. K. (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science, 12, 301–309.

    Article  CAS  PubMed  Google Scholar 

  • Sunkar, R., Girke, T., & Zhu, J. K. (2005). Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Research, 33, 4443–4454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar, R., & Zhu, J. K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16(8), 2001–2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar, R., & Zhu, J. K. (2007). Micro RNAs and Short interfering RNAs in plants. Journal of Integrative Plant Biology, 49, 817–826.

    Article  CAS  Google Scholar 

  • Tompa, R., McCallum, C. M., Delrow, J., Henikoff, J. G., Van Steensel, B., & Henikoff, S. (2002). Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASES3. Current Biology, 12, 65–68.

    Article  CAS  PubMed  Google Scholar 

  • Trindade, I., Capitao, C., Dalmay, T., Fevereiro, M. P., & Santos, D. M. (2010). miR398 and miR408 are upregulated in response to water deficit in Medicago truncatula. Planta, 231(3), 705–716.

    Article  CAS  PubMed  Google Scholar 

  • Vaistij, F. E., Jones, L., & Baulcombe, D. C. (2002). Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell, 14(4), 857–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdes-Lopez, O., Arenas-Huertero, C., Ramirez, M., Girard, L., Sanchez, F., Vance, C. P., et al. (2008). Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. Plant, Cell and Environment, 31, 1834–1843.

    Article  CAS  PubMed  Google Scholar 

  • Vaillant, I., Schubert, I., Tourmente, S., & Mathieu, O. (2006). MOM1 mediates DNA-methylation-independent silencing of repetitive sequences in Arabidopsis. EMBO Reports, 7(12), 1273–1278. https://doi.org/10.1038/sj.embor.7400791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Buskirk, H. A., & Thomashow, M. F. (2006). Arabidopsis transcription factors regulating cold acclimation. Physiologia Plantarum, 126(1), 72–80.

    Article  Google Scholar 

  • Vanyushin, B. F. (2006). DNA methylation in plants. Current Topics in Microbiology and Immunology, 301, 67–122.

    CAS  PubMed  Google Scholar 

  • Vazquez, F. (2006). Arabidopsis endogenous small RNAs: Highways and byways. Trends in Plant Science, 11(9), 460–468.

    Article  CAS  PubMed  Google Scholar 

  • Vazquez, F., Gasciolli, V., Crete, P., & Vaucheret, H. (2004). The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Current Biology, 14, 346–351.

    Article  CAS  PubMed  Google Scholar 

  • Wada, Y., Ohya, H., Yamaguchi, Y., Koizumi, N., & Sano, H. (2003). Preferential de novomethylation of cytosine residues in non-CpG sequences by a domains rearranged DNA methyltransferase from tobacco plants. Journal of Biological Chemistry, 278(43), 42386–42393.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, D. (2003). Chromatin regulation of plant development. Current Opinion in Plant Biology, 6, 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., Chen, L., Zhao, M., Tian, Q., & Zhang, W. H. (2011). Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics, 12, 367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Sun, F., Cao, H., Peng, H., Ni, Z., Sun, Q., et al. (2012). TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS ONE, 7, e48445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, L., Zhang, D., **ang, F., & Zhang, Z. (2009). Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. International Journal of Plant Sciences, 170(8), 979–989.

    Article  CAS  Google Scholar 

  • Whitelaw, N. C., & Whitelaw, E. (2006). How lifetimes shape epigenotype within and across generations. Human Molecular Genetics, 15(2), 131–137.

    Article  CAS  Google Scholar 

  • Wu, B. F., Li, W. F., Xu, H. Y., Qi, L. W., & Han, S. Y. (2015). Role of cinmiR2118 in drought stress responses in Caragana intermedia and Tobacco. Gene, 574, 34–40.

    Article  CAS  PubMed  Google Scholar 

  • Wu, G., & Poethig, R. S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 133, 3539–3547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., Wei, B., Liu, H., Li, T., & Rayner, S. (2011). MiRPara: A SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics, 12, 107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **n, M. M., Wang, Y., Yao, Y. Y., **e, C. J., Peng, H. R., Ni, Z. F., et al. (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticumaestivum L.). BMC Plant Biology, 10, 123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamasaki, H. (2007). Regulation of copper homeostasis by micro-RNA in Arabidopsis. Journal of Biological Chemistry, 282, 16369–16378.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, S., Li, Z., Li, D., Yuan, N., Hu, Q., & Luo, H. (2015). Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in cree** bentgrass. Plant Physiology, 169, 576–593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zemach, A., & Grafi, G. (2003). Characterization of Arabidopsis thaliana methyl-CpG-binding domain (MBD) proteins. Plant Journal, 34(5), 565–572.

    Article  CAS  PubMed  Google Scholar 

  • Zemach, A., & Grafi, G. (2007). Methyl-CpG-binding domain proteins in plants: Interpreters of DNA methylation. Trends in Plant Science, 12, 80–85.

    Article  CAS  PubMed  Google Scholar 

  • Zemach, A., Li, Y., Wayburn, B., Ben-Meir, H., Kiss, V., Avivi, Y., et al. (2005). DDM1 binds Arabidopsis methyl-CpG binding domain proteins and affects their subnuclear localization. Plant Cell, 17, 1549–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z. X., Wei, L. Y., Zou, X. L., Tao, Y. S., Liu, Z. J., & Zheng, Y. L. (2008a). Submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Annals of Botany, 102, 509–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Wollenweber, B., Jiang, D., Liu, F., & Zhao, J. (2008b). Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. Journal of Experimental Botany, 59, 839–848.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Zhao, H., Gao, S., Wang, W. C., Katiyar-Agarwal, S., Huang, H. D., et al. (2011). Arabidopsis argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a golgi-localized SNARE Gene, MEMB12. Molecular Cell, 42(3), 356–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, B., Ge, L., Liang, R., Li, W., Ruan, K., Lin, H., et al. (2009). Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol. Biology, 10, 29.

    Article  CAS  Google Scholar 

  • Zhao, B., Liang, R., Ge, L., Li, W., **ao, H., Lin, H., et al. (2007). Identification of drought-induced microRNAs in rice. Biochemical and Biophysical Research Communications, 354, 585–590.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, T. (2007). A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes & Development, 21, 1190–1203.

    Article  CAS  Google Scholar 

  • Zhou, M., Li, D., Li, Z., Hu, Q., Yang, C., Zhu, L., et al. (2013). Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic cree** bentgrass. Plant Physiology, 161, 1375–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., & Luo, L. (2010). Genome wide identification and analysis of drought responsive microRNAs in Oryza sativa. Journal of Experimental Botany, 10, 61–75.

    Google Scholar 

  • Zhou, C., Zhang, L., Duan, J., Miki, B., & Wu, K. (2005). HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell, 17(4), 1196–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, J., Kapoor, A., Sridhar, V. V., Agius, F., & Zhu, J. K. (2007a). The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Current Biology, 17, 54–59.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J. K., Zhu, J., Hu, X., & Zhu, J. (2007b). Role of microRNA in plant salt tolerance. United States Patent 20070214521.

Download references

Acknowledgements

We are highly thankful to the Director of our Institute for providing all kind of assistance and also thankful to ICAR for providing grants support in the form of Lal Bahadur Shashtri Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saroha, M., Singroha, G., Sharma, M. et al. sRNA and epigenetic mediated abiotic stress tolerance in plants. Ind J Plant Physiol. 22, 458–469 (2017). https://doi.org/10.1007/s40502-017-0330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0330-z

Keywords

Navigation