Log in

A Comprehensive Review on the Effect of Natural Products on Colorectal Cancer

  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article provides insight and information on selected natural products against colorectal cancer and its mechanism of action.

Recent Findings

Colorectal cancer (CRC) is the fourth primary occurring cancer, rectal cancer is eighth throughout the world, and both are the third most commonly occurring and deadliest cancer types around the globe. The overall CRC occurrence and mortality rates are rapidly increasing in develo** countries, and the rates are decreasing or stabilizing in developed countries due to high-fat and low-fiber diets. On the other hand, natural products are versatile molecules that possess benefits, including antioxidant, anticancer, anti-inflammatory, anti-diabetic, cardioprotective, hepatoprotective, and neuroprotective. Various signal transduction pathways contribute to the pathogenesis of CRC.

Summary

Hence, in this review, we documented the natural products against colorectal cancer and their mechanism of action that augments the signal transduction pathways that are highly dysregulated in colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Przegl Gastroenterologiczny. 2019;14:89–103.

    CAS  Google Scholar 

  2. Pardamean CI, Sudigyo D, Budiarto A, Mahesworo B, Hidayat AA, Baurley JW, et al. Changing colorectal cancer trends in Asians: epidemiology and risk factors. Oncol Rev. 2023;17:10576.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pitchumoni CS, Broder A. Chapter 2 - Epidemiology of colorectal cancer. In: Floch MH, editor. Colorectal Neoplasia and the Colorectal Microbiome: Academic Press; 2020. p. 5–33.

  4. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22:191–7. This article, the incidence, mortality, and survival rates for colorectal cancer are reviewed.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kolligs FT. Diagnostics and epidemiology of colorectal cancer. Visceral Med. 2016;32:158–64.

    Article  Google Scholar 

  6. Pandurangan AK, Dharmalingam P, Sadagopan SK, Ramar M, Munusamy A, Ganapasam S. Luteolin induces growth arrest in colon cancer cells through involvement of Wnt/β-catenin/GSK-3β signaling. J Environ Pathol Toxicol Oncol. 2013;32:131–9.

    Article  CAS  PubMed  Google Scholar 

  7. Pandurangan AK, Divya T, Kumar K, Dineshbabu V, Velavan B, Sudhandiran G. Colorectal carcinogenesis: Insights into the cell death and signal transduction pathways: a review. World J Gastrointest Oncol. 2018;10:244–59. This article emphasizes the key signaling pathways that are dysregulated in colorectal cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shussman N, Wexner SD. Colorectal polyps and polyposis syndromes. Gastroenterol Rep. 2014;2:1–15.

    Article  Google Scholar 

  9. Fleming M, Ravula S, Tatishchev SF, Wang HL. Colorectal carcinoma: pathologic aspects. Jo Gastrointest Oncol. 2012;3:153–73.

    Google Scholar 

  10. Thanikachalam K, Khan G. Colorectal cancer and nutrition. Nutrients. 2019;11:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci. 2017;18:197.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ballinger AB, Anggiansah C. Colorectal cancer. BMJ (Clin Res Ed). 2007;335:715–8.

    Article  Google Scholar 

  13. Siegel RL, Miller KD. Color Cancer Stat. 2020;2020(70):145–64. This article revealed the statistics of colorectal cancer.

    Google Scholar 

  14. Pandurangan AK, Esa NM. Dietary non-nutritive factors in targeting of regulatory molecules in colorectal cancer: an update. Asian Pac J Cancer Prev : APJCP. 2013;14:5543–52.

    Article  PubMed  Google Scholar 

  15. Mohsin NUA, Aslam S, Ahmad M. Cyclooxygenase-2 (COX-2) as a target of anticancer agents: a review of novel synthesized scaffolds having anticancer and COX-2 inhibitory potentialities. Pharmaceuticals. 2022;15:1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sheng J, Sun H, Yu FB, Li B, Zhang Y, Zhu YT. The role of Cyclooxygenase-2 in colorectal cancer. Int J Med Sci. 2020;17:1095–101. In this article, the role of Cyclooxygenase-2 in colorectal cancer was reported.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sebio A, Kahn M, Lenz HJ. The potential of targeting Wnt/β-catenin in colon cancer. Expert Opin Ther Targets. 2014;18:611–5.

    Article  CAS  PubMed  Google Scholar 

  18. Yuan S, Tao F, Zhang X, Zhang Y, Sun X, Wu D. Role of Wnt/β-catenin signaling in the chemoresistance modulation of colorectal cancer. 2020;2020:9390878.

  19. Cheng X, Xu X, Chen D, Zhao F, Wang W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacotherapy Biomed Pharmacotherapie. 2019;110:473–81.

    Article  CAS  Google Scholar 

  20. Tan BL, Norhaizan ME, Pandurangan AK, Hazilawati H, Roselina K. Brewers’ rice attenuated aberrant crypt foci develo** in colon of azoxymethane-treated rats. Pak J Pharm Sci. 2016;29:205–12.

    CAS  PubMed  Google Scholar 

  21. Vichitsakul K, Laowichuwakonnukul K, Soontornworajit B, Poomipark N, Itharat A, Rotkrua P. Anti-proliferation and induction of mitochondria-mediated apoptosis by Garcinia hanburyi resin in colorectal cancer cells. Heliyon. 2023;9:e16411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miura K, Satoh M, Kinouchi M, Yamamoto K, Hasegawa Y, Kakugawa Y, et al. The use of natural products in colorectal cancer drug discovery. Expert Opin Drug Discov. 2015;10:411–26.

    Article  CAS  PubMed  Google Scholar 

  23. Rajamanickam S, Agarwal R. Natural products and colon cancer: current status and future prospects. Drug Dev Res. 2008;69:460–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang XM, Yang ZJ, **e Q, Zhang ZK, Zhang H, Ma JY. Natural products for treating colorectal cancer: a mechanistic review. Biom Pharmacotherapy Biomed Pharmacotherapie. 2019;117:109142.

    Article  CAS  Google Scholar 

  25. Park HJ, Yoon SH, Han LS, Zheng LT, Jung KH, Uhm YK, et al. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World J Gastroenterol. 2005;11:5156–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cassiem W, de Kock M. The anti-proliferative effect of apricot and peach kernel extracts on human colon cancer cells in vitro. BMC Complement Altern Med. 2019;19:32.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lv WF, Ding MY, Zheng R. Isolation and quantitation of amygdalin in apricot-kernel and Prunus Tomentosa Thunb. by HPLC with solid-phase extraction. J Chromatogr Sci. 2005;43:383–7.

    Article  PubMed  Google Scholar 

  28. He XY, Wu LJ, Wang WX, **e PJ, Chen YH, Wang F. Amygdalin - a pharmacological and toxicological review. J Ethnopharmacol. 2020;254:112717.

    Article  CAS  PubMed  Google Scholar 

  29. Donald G, Hertzer K, Eibl G. Baicalein–an intriguing therapeutic phytochemical in pancreatic cancer. Curr Drug Targets. 2012;13:1772–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Subramaniam S, Raju R, Palanisamy A, Sivasubramanian A. Development and extraction optimization of baicalein and pinostrobin from Scutellaria violacea through response surface methodology. Pharmacogn Mag. 2015;11:S127–38.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tuli HS, Aggarwal V, Kaur J, Aggarwal D, Parashar G, Parashar NC, et al. Baicalein: a metabolite with promising antineoplastic activity. Life Sci. 2020;259:118183.

    Article  CAS  PubMed  Google Scholar 

  32. Phan T, Nguyen VH, A’Lincourt Salazar M, Wong P, Diamond DJ, Yim JH, et al. Inhibition of autophagy amplifies baicalein-induced apoptosis in human colorectal cancer. Mol Ther Oncolytics. 2020;19:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chai Y, Xu J, Yan B. The anti-metastatic effect of baicalein on colorectal cancer. Oncol Rep. 2017;37:2317–23. In this article, the anti-metastatic role of baicalein was emphasized.

    Article  CAS  PubMed  Google Scholar 

  34. Chen M, Zhong K, Tan J, Meng M, Liu CM, Chen B, et al. Baicalein is a novel TLR4-targeting therapeutics agent that inhibits TLR4/HIF-1α/VEGF signaling pathway in colorectal cancer. 2021;11:e564.

  35. Lu M, Ho CT, Huang Q. Extraction, bioavailability, and bioefficacy of capsaicinoids. J Food Drug Anal. 2017;25:27–36.

    Article  CAS  PubMed  Google Scholar 

  36. Bhagwat DA, Swami PA, Nadaf SJ, Choudhari PB, Kumbar VM, More HN, et al. Capsaicin loaded solid SNEDDS for enhanced bioavailability and anticancer activity: in-vitro, in-silico, and in-vivo characterization. J Pharm Sci. 2021;110:280–91.

    Article  CAS  PubMed  Google Scholar 

  37. ** J, Lin G, Huang H, Xu D, Yu H, Ma X, et al. Capsaicin mediates cell cycle arrest and apoptosis in human colon cancer cells via stabilizing and activating p53. Int J Biol Sci. 2014;10:285–95.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Seong-Ho Lee RC. Anti-tumorigenic effects of capsaicin in colon cancer. J Food Chem Nanotechnol. 2016;24:162–7. https://doi.org/10.17756/jfcn.2016-025.

    Article  Google Scholar 

  39. Lee SH, Richardson RL, Dashwood RH, Baek SJ. Capsaicin represses transcriptional activity of β-catenin in human colorectal cancer cells. J Nutr Biochem. 2012;23:646–55.

    Article  CAS  PubMed  Google Scholar 

  40. Yang J, Li TZ, Xu GH, Luo BB, Chen YX, Zhang T. Low-concentration capsaicin promotes colorectal cancer metastasis by triggering ROS production and modulating Akt/mTOR and STAT-3 pathways. Neoplasma. 2013;60:364–72.

    Article  CAS  PubMed  Google Scholar 

  41. Wang L, Wang R, Wei GY, Zhang RP, Zhu Y, Wang Z, et al. Cryptotanshinone alleviates chemotherapy-induced colitis in mice with colon cancer via regulating fecal-bacteria-related lipid metabolism. Pharmacol Res. 2021;163:105232.

    Article  CAS  PubMed  Google Scholar 

  42. Wu YH, Wu YR, Li B, Yan ZY. Cryptotanshinone: a review of its pharmacology activities and molecular mechanisms. Fitoterapia. 2020;145:104633.

    Article  CAS  PubMed  Google Scholar 

  43. Fu X, Zhao W, Li K, Zhou J, Chen X. Cryptotanshinone inhibits the growth of HCT116 colorectal cancer cells through endoplasmic reticulum stress-mediated autophagy. Front Pharmacol. 2021;12:653232. In this article, it was shown that Cryptotanshinone inhibits colorectal cancer via ER stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fu L, Han B, Zhou Y, Ren J, Cao W, Patel G, et al. The anticancer properties of tanshinones and the pharmacological effects of their active ingredients. Front Pharmacol. 2020;11:193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li W, Saud SM, Young MR, Colburn NH, Hua B. Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro. Mol Cell Biochem. 2015;406:63–73.

    Article  CAS  PubMed  Google Scholar 

  46. Karthikeyan A, Senthil N, Min T. Nanocurcumin: a promising candidate for therapeutic applications. Front Pharmacol. 2020;11:487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Santos RBD, Nakama KA, Pacheco CO, de Gomes MG, de Souza JF, de Souza Pinto AC, et al. Curcumin-loaded nanocapsules: influence of surface characteristics on technological parameters and potential antimalarial activity. Mater Sci Eng, C Mater Biol Appl. 2021;118:111356.

    Article  PubMed  Google Scholar 

  48. Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med. 2018;12:361–73.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84.

    Article  CAS  PubMed  Google Scholar 

  50. Debnath P, Huirem RS, Dutta P, Palchaudhuri S. Epithelial-mesenchymal transition and its transcription factors. Biosci Rep. 2022;42:BSR20211754.

    Article  CAS  PubMed  Google Scholar 

  51. Du B, Shim JS. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules (Basel, Switzerland). 2016;21:965.

    Article  PubMed  Google Scholar 

  52. Wang H, Cai X, Ma L. Curcumin modifies epithelial-mesenchymal transition in colorectal cancer through regulation of miR-200c/EPM5. Cancer Manag Res. 2020;12:9405–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kabir S. Jacalin: a jackfruit (Artocarpus heterophyllus) seed-derived lectin of versatile applications in immunobiological research. J Immunol Methods. 1998;212:193–211.

    Article  CAS  PubMed  Google Scholar 

  54. Barre A, Damme E. Are dietary lectins relevant allergens in plant food allergy? Foods. 2020;9:1724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Geraldino TH, Modiano P. Jacalin has chemopreventive effects on colon cancer development. 2017;2017:4614357.

  56. Bailey CJ. Metformin: historical overview. Diabetologia. 2017;60:1566–76.

    Article  CAS  PubMed  Google Scholar 

  57. Huang X, Hong X, Wang J, Sun T, Yu T, Yu Y, et al. Metformin elicits antitumour effect by modulation of the gut microbiota and rescues Fusobacterium nucleatum-induced colorectal tumourigenesis. EBioMedicine. 2020;61:103037.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Higurashi T, Nakajima A. Metformin and colorectal cancer. Front Endocrinol. 2018;9:622. In this article, the effective way of treating colorectal cancer was discussed.

    Article  Google Scholar 

  59. Signorelli P, Fabiani C, Brizzolari A, Paroni R, Casas J, Fabriàs G, et al. Natural grape extracts regulate colon cancer cells malignancy. Nutr Cancer. 2015;67:494–503.

    Article  CAS  PubMed  Google Scholar 

  60. Magrone T, Magrone M. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: in vitro and in vivo studies. Antioxidants. 2019;9(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Amor S, Châlons P, Aires V, Delmas D. Polyphenol extracts from red wine and grapevine: potential effects on cancers. Diseases (Basel, Switzerland). 2018;6:106.

    CAS  PubMed  Google Scholar 

  62. Li X, Sun J, Xu Q, Duan W, Yang L, Wu X, et al. Oxymatrine inhibits colorectal cancer metastasis via attenuating PKM2-mediated aerobic glycolysis. Cancer Management Res. 2020;12:9503–13.

    Article  CAS  Google Scholar 

  63. Tanabe N, Kuboyama T, Kazuma K, Konno K, Tohda C. The extract of roots of Sophora flavescens enhances the recovery of motor function by axonal growth in mice with a spinal cord injury. Front Pharmacol. 2015;6:326.

    PubMed  Google Scholar 

  64. Huan DQ, Hop NQ, Son NT. Oxymatrine: a current overview of its health benefits. Fitoterapia. 2023:105565.

  65. Liang L, Wu J, Luo J, Wang L, Chen ZX, Han CL, et al. Oxymatrine reverses 5-fluorouracil resistance by inhibition of colon cancer cell epithelial-mesenchymal transition and NF-κB signaling in vitro. Oncol Lett. 2020;19:519–26.

    CAS  PubMed  Google Scholar 

  66. Liu Y, Bi T, Wang Z, Wu G, Qian L, Gao Q, et al. Oxymatrine synergistically enhances antitumor activity of oxaliplatin in colon carcinoma through PI3K/AKT/mTOR pathway. Apoptosis. 2016;21:1398–407.

    Article  CAS  PubMed  Google Scholar 

  67. Liang L, Sun W, Wei X, Wang L, Ruan H, Zhang J, et al. Oxymatrine suppresses colorectal cancer progression by inhibiting NLRP3 inflammasome activation through mitophagy induction in vitro and in vivo. Phytotherapy research: PTR. 2023.

  68. Shaheer K, Somashekarappa HM, Lakshmanan MD. Piperine sensitizes radiation-resistant cancer cells towards radiation and promotes intrinsic pathway of apoptosis. J Food Sci. 2020;85:4070–9.

    Article  CAS  PubMed  Google Scholar 

  69. Saini N, Chopra B, Dhingra AK. Synergistic effect of piperine and its derivatives: a comprehensive review. Curr Drug Res Rev. 2023;15:105–21.

    Article  CAS  PubMed  Google Scholar 

  70. Tiwari A, Mahadik KR, Gabhe SY. Piperine: a comprehensive review of methods of isolation, purification, and biological properties. Med Drug Discov. 2020;7:100027.

    Article  Google Scholar 

  71. AbouAitah K, Stefanek A, Higazy IM. Effective targeting of colon cancer cells with piperine natural anticancer prodrug using functionalized clusters of hydroxyapatite nanoparticles. Pharmaceutics. 2020;12(1):70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. de Almeida GC, Oliveira LFS. Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells. Sci Rep. 2020;10:11681.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yaffe PB, Power Coombs MR, Doucette CD, Walsh M, Hoskin DW. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol Carcinog. 2015;54:1070–85. Piperine inhibits colorectal cancer via inducing apoptosis and ER stress.

    Article  CAS  PubMed  Google Scholar 

  74. Wen H, Yuan X, Li C, Li J, Yue H. Two new isoquinoline alkaloids from Hypecoum leptocarpum Hook. f. et Thoms. Nat Prod Res. 2022:1–6.

  75. Sreenivasmurthy SG, Iyaswamy A, Krishnamoorthi S, Reddi RN, Kammala AK, Vasudevan K, et al. Bromo-protopine, a novel protopine derivative, alleviates tau pathology by activating chaperone-mediated autophagy for Alzheimer’s disease therapy. Front Mol Biosci. 2022;9:1030534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li J, Xu Z, OuYang C, Wu X, **e Y, **e J. Protopine alleviates lipopolysaccharide-triggered intestinal epithelial cell injury through retarding the NLRP3 and NF-κB signaling pathways to reduce inflammation and oxidative stress. Allergol Immunopathol. 2022;50:84–92.

    Article  Google Scholar 

  77. Kim M, Kim H, Kim H. Anti-inflammatory effect of protopine through MAPK and NF-κB signaling regulation in HepG2 Cell. Molecules. 2022;27:4601. In this article, it was shown that protopine modulates the key signaling pathway in liver cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Son Y, An Y, Jung J, Shin S, Park I, Gwak J, et al. Protopine isolated from Nandina domestica induces apoptosis and autophagy in colon cancer cells by stabilizing p53. Phytother Res. 2019;33:1689–96.

    Article  CAS  PubMed  Google Scholar 

  79. Abirami G, Alexpandi R, Sudhin S, Durgadevi R, Roshni PS, Kumar P, et al. Pyrogallol downregulates the expression of virulence-associated proteins in Acinetobacter baumannii and showing anti-infection activity by improving non-specific immune response in zebrafish model. Int J Biol Macromol. 2023;226:853–69.

    Article  CAS  PubMed  Google Scholar 

  80. Revathi S, Hakkim FL, Kumar NR, Bakshi HA, Rashan L, Al-Buloshi M, et al. Induction of HT-29 colon cancer cells apoptosis by pyrogallol with growth inhibiting efficacy against drug-resistant Helicobacter pylori. Anticancer Agents Med Chem. 2018;18:1875–84.

    Article  CAS  PubMed  Google Scholar 

  81. Sampath G, Shyu DJH, Rameshkumar N, Krishnan M, Sivasankar P, Kayalvizhi N. Synthesis and characterization of pyrogallol capped silver nanoparticles and evaluation of their in vitro anti-bacterial, anti-cancer profile against AGS cells. J Cluster Sci. 2021;32:549–57.

    Article  CAS  Google Scholar 

  82. Revathi S, Hakkim FL, Ramesh Kumar N, Bakshi HA, Sangilimuthu AY, Tambuwala MM, et al. In vivo anti cancer potential of pyrogallol in murine model of colon cancer. Asian Pac J Cancer Prev : APJCP. 2019;20:2645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reid KA, Jäger AK, van Staden J. Isolation of the anti-bacterial vernodalin from traditionally used Vernonia colorata. S Afr J Bot. 2001;67:71–3.

    Article  CAS  Google Scholar 

  84. Luo Y, Zhang D, Hou L, Lin N. Vernodalin suppresses tumor proliferation and increases apoptosis of gastric cancer cells through attenuation of FAK/PI3K/AKT/mTOR and MAPKs signaling pathways. Curr Pharm Biotechnol. 2023;24:708–17.

    Article  CAS  PubMed  Google Scholar 

  85. Ananda Sadagopan SK, Mohebali N, Looi CY, Hasanpourghadi M, Pandurangan AK, Arya A, et al. Forkhead Box Transcription Factor (FOXO3a) mediates the cytotoxic effect of vernodalin in vitro and inhibits the breast tumor growth in vivo. J Exp Clin Cancer Res : CR. 2015;34:147.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mohebali N, Pandurangan AK, Mustafa MR, Anandasadagopan SK, Alagumuthu T. Vernodalin induces apoptosis through the activation of ROS/JNK pathway in human colon cancer cells. J Biochem Mol Toxicol. 2020;34: e22587. In this article, it was shown that Vernodalin inhibits colorectal cancer by activating ROS/JNK pathway.

    Article  CAS  PubMed  Google Scholar 

  87. Liao W, Fan L, Zheng Z, Liu H, Deng H, Li M, et al. Ziyuglycoside II exerts antiproliferative and antimetastasis effects on hepatocellular carcinoma cells. Anticancer Drugs. 2020;31:819–27.

    Article  CAS  PubMed  Google Scholar 

  88. Zhong Y, Tian X, Jiang X, Dang W, Cheng M, Li N, et al. Novel Ziyuglycoside II derivatives inhibit MCF-7 cell proliferation via inducing apoptosis and autophagy. Bioorg Chem. 2023;139:106752.

    Article  CAS  PubMed  Google Scholar 

  89. Bai C, Zhang Z, Zhou L, Zhang HY, Chen Y, Tang Y. Repurposing Ziyuglycoside II against colorectal cancer via orchestrating apoptosis and autophagy. Front Pharmacol. 2020;11:576547. In this article, Ziyuglycoside II inhibits colorectal cancer and induces apoptosis and autophagy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.F., S.K. wrote the manuscript. Dr. A.K.P. edited and corrected the manuscript

Corresponding author

Correspondence to Ashok Kumar Pandurangan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors of this article declare no competing of interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human and animal subjects performed by any of the authors.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors have given the consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrose Farzana, V.A., Kumaran, S. & Pandurangan, A.K. A Comprehensive Review on the Effect of Natural Products on Colorectal Cancer. Curr. Pharmacol. Rep. 10, 1–11 (2024). https://doi.org/10.1007/s40495-023-00349-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-023-00349-5

Keywords

Navigation