Log in

How Modulations of the Gut Microbiota May Help in Preventing or Treating Parasitic Diseases

  • Tropical Medicine in the Mediterranean Region (F Bruschi, Section Editor)
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Due to the combined effects of international travel, climate change, and globalization, clinicians in Southern Europe are seeing a re-emergence of parasitic infections once thought to have been eradicated, which can often result in chronic illness, and thus present new diagnostic and therapeutic challenges. Here, we comment on two such parasitic protozoa, Trypanosoma cruzi and Plasmodium, and how modulation of the gut microbiota can provide exciting new possible therapeutic strategies in the treatment and prevention of Chagas disease and malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Church DL. Major factors affecting the emergence and re-emergence of infectious diseases. Clin Lab Med. 2004;24(3):559–86, v.

    Article  Google Scholar 

  2. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol [Internet]. 2013;14(7):685–90. https://doi.org/10.1038/ni.2608.

    Article  CAS  Google Scholar 

  3. Dheilly NM, Poulin R, Thomas F. Biological warfare: microorganisms as drivers of host–parasite interactions. Infect Genet Evol [Internet]. 2015;34:251–9. Available from: https://www.sciencedirect.com/science/article/pii/S1567134815001896

  4. Pérez-Molina JA, Molina I. Chagas disease. Lancet. 2018;391(10115):82–94.

    Article  Google Scholar 

  5. Guarner J. Chagas disease as example of a reemerging parasite. Semin Diagn Pathol. 2019;36(3):164–9.

    Article  Google Scholar 

  6. Antinori S, Galimberti L, Bianco R, Grande R, Galli M, Corbellino M. Chagas disease in Europe: a review for the internist in the globalized world. European Journal of Internal Medicine [Internet]. 2017;43:6–15. Available from: https://www.sciencedirect.com/science/article/pii/S0953620517301772

  7. Lewis MD, Fortes Francisco A, Taylor MC, Burrell-Saward H, McLatchie AP, Miles MA, et al. Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell Microbiol. 2014;16(9):1285–300.

    Article  CAS  Google Scholar 

  8. Silberstein E, Serna C, Fragoso SP, Nagarkatti R, Debrabant A. A novel nanoluciferase-based system to monitor Trypanosoma cruzi infection in mice by bioluminescence imaging. PLoS ONE. 2018;13(4):e0195879.

    Article  Google Scholar 

  9. de Souza-Basqueira M, Ribeiro RM, de Oliveira LC, Moreira CHV, Martins RCR, Franco DC, et al. Gut dysbiosis in Chagas disease. A possible link to the pathogenesis. Front Cell Infect Microbiol. 2020;10:402.

    Article  Google Scholar 

  10. Robello C, Maldonado DP, Hevia A, Hoashi M, Frattaroli P, Montacutti V, et al. The fecal, oral, and skin microbiota of children with Chagas disease treated with benznidazole. PLoS ONE. 2019;14(2):e0212593.

    Article  CAS  Google Scholar 

  11. McCall LI, Tripathi A, Vargas F, Knight R, Dorrestein PC, Siqueira-Neto JL. Experimental Chagas disease-induced perturbations of the fecal microbiome and metabolome. PLoS Negl Trop Dis. 2018;12(3):e0006344.

    Article  Google Scholar 

  12. Duarte-Silva E, Morais LH, Clarke G, Savino W, Peixoto C. Targeting the gut microbiota in Chagas disease: what do we know so far? Front Microbiol. 2020;11:585857.

    Article  Google Scholar 

  13. Duarte R, Silva AM, Vieira LQ, Afonso LCC, Nicoli JR. Trypanosoma cruzi: influence of predominant bacteria from indigenous digestive microbiota on experimental infection in mice. Exp Parasitol. 2005;111(2):87–96.

    Article  CAS  Google Scholar 

  14. Bautista GCR, Torres Á. The inoculation of Lactobacillus casei in NIH mice induces a protective response against Trypanosoma cruzi (Ninoa strain) infection. Veterinaria México. 2008;39(2):139–44.

    Google Scholar 

  15. Martini M, Angheben A, Riccardi N, Orsini D. Fifty years after the eradication of malaria in Italy. The long pathway toward this great goal and the current health risks of imported malaria. Pathog Glob Health. 2021;115(4):215–23.

    Article  Google Scholar 

  16. GregurićGracner G, Vucevac BV. History of eradication of malaria in Croatia. Orvostorteneti kozlemenyek. 2002;47(1–4):145–55.

    Google Scholar 

  17. Boccolini D, Menegon M, di Luca M, Toma L, Severini F, Marucci G, et al. Non-imported malaria in Italy: paradigmatic approaches and public health implications following an unusual cluster of cases in 2017. BMC Public Health. 2020;20(1):857.

    Article  Google Scholar 

  18. European Centre for Disease Prevention and Control. Rapid risk assessment: multiple reports of locally-acquired malaria infections in the EU [Internet]. 2017. Available from: https://www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-multiple-reports-locally-acquired-malaria-infections-eu

  19. Panin F, Orlandini E, Galli L, de Martino M, Chiappini E. Increasing imported malaria in children and adults in Tuscany, Italy, (2000 to 2017): a retrospective analysis. Travel Med Infect Dis. 2019;29:34–9.

    Article  Google Scholar 

  20. Garcia LS. Malaria. Clin Lab Med. 2010;30(1):93–129.

    Article  Google Scholar 

  21. Guan W, Song X, Yang S, Zhu H, Li F, Li J. Observation of the gut microbiota profile in BALB/c mice induced by Plasmodium yoelii 17XL infection. Front Microbiol. 2022;13:858897.

    Article  Google Scholar 

  22. Easton A v, Raciny-Aleman M, Liu V, Ruan E, Marier C, Heguy A, et al. Immune response and microbiota profiles during coinfection with Plasmodium vivax and soil-transmitted helminths. mBio. 2020;11(5):e01705-20.

  23. Fan ZG, Li X, Fu HY, Zhou LM, Gong FL, Fang M. Gut microbiota reconstruction following host infection with blood-stage Plasmodium berghei ANKA strain in a murine model. Curr Med Sci. 2019;39(6):883–9.

    Article  CAS  Google Scholar 

  24. Mutoni JD, Coutelier JP, Rujeni N, Mutesa L, Cani PD. Possible interactions between malaria, helminthiases and the gut microbiota: a short review. Microorganisms. 2022;10(4):721

  25. Villarino NF, LeCleir GR, Denny JE, Dearth SP, Harding CL, Sloan SS, Gribble JL, Campagna SR, Wilhelm SW, Schmidt NW Composition of the gut microbiota modulates the severity of malaria. Proc Natl Acad Sci [Internet]. 2016;113(8):2235–40. https://doi.org/10.1073/pnas.1504887113.

    Article  CAS  Google Scholar 

  26. Taniguchi T, Miyauchi E, Nakamura S, Hirai M, Suzue K, Imai T, et al. Plasmodium berghei ANKA causes intestinal malaria associated with dysbiosis. Sci Rep. 2015;5:15699.

    Article  CAS  Google Scholar 

  27. Yooseph S, Kirkness EF, Tran TM, Harkins DM, Jones MB, Torralba MG, et al. Stool microbiota composition is associated with the prospective risk of Plasmodium falciparum infection. BMC Genomics [Internet]. 2015;16(1):631. https://doi.org/10.1186/s12864-015-1819-3.

    Article  CAS  Google Scholar 

  28. Yilmaz B, Portugal S, Tran TM, Gozzelino R, Ramos S, Gomes J, et al. Gut microbiota elicits a protective immune response against malaria transmission. Cell. 2014;159(6):1277–89.

    Article  CAS  Google Scholar 

  29. Aguilar R, Ubillos I, Vidal M, Balanza N, Crespo N, Jiménez A, et al. Antibody responses to α-gal in African children vary with age and site and are associated with malaria protection. Sci Rep. 2018;8(1):9999.

    Article  Google Scholar 

  30. Rodrigues da Cunha GM, Azevedo MA, Nogueira DS, de Clímaco MC, Valencia Ayala E, Jimenez Chunga JA, et al. α-gal immunization positively impacts Trypanosoma cruzi colonization of heart tissue in a mouse model. PLoS Negl Trop Dis. 2021;15(7):0009613.

    Article  Google Scholar 

  31. Bamgbose T, Alberdi P, Abdullahi IO, Inabo HI, Bello M, Sinha S, et al. Functional characterization of α-gal producing lactic acid bacteria with potential probiotic properties. Sci Rep [Internet]. 2022;12(1):7484. https://doi.org/10.1038/s41598-022-11632-8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenza Putignani.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piazzesi, A., Pane, S. & Putignani, L. How Modulations of the Gut Microbiota May Help in Preventing or Treating Parasitic Diseases. Curr Trop Med Rep 9, 257–260 (2022). https://doi.org/10.1007/s40475-022-00275-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-022-00275-4

Keywords

Navigation