Log in

Design of quasi fuzzy sliding mode based maneuvering of autonomous vehicle

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Maneuvering of autonomous vehicles primarily relies on trajectory tracking control techniques to self-drive at predefined steering angle with parametric uncertainty and external perturbation. The steering mechanism in autonomous navigation must be reliable and extremely effective, even in challenging circumstances for nonlinear trajectory tracking and lane changing of autonomous vehicles. From a control point of view, fuzzy quasi-sliding mode control methodology was adopted to attenuate the effect of model parametric uncertainties, tire cornering stiffness, road bonding coefficient, measurement noises, longitudinal velocity and exogenous disturbances. The robust tracking control incorporates quasi-sliding mode control that ensures the lateral motion and yaw dynamics with nominal operating parameters by compensating nonlinear dynamics with model uncertainty and fuzzy logic approach accomplishes balance between chattering alleviation and tracking accuracy. The control algorithm is model-free and requires no prior knowledge of the bounds of uncertainties in the vehicle’s dynamic parameters. Lyapunov theory is used to prove the closed loop tracking control scheme global asymptotic stability. Finally, the efficiency and reliability of the suggested control strategy is confirmed through simulation based on three test scenarios and experimental validation conducted on dSPACE SCALEXIO hardware-in-loop platform for nonlinear trajectory tracking with input constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

The authors declare no additional data and materials are submitted.

Abbreviations

m :

Vehicle mass (in kg)

I z :

Moment of inertia (in kg/m2)

L f :

Distance from front axle to center of the mass (in m)

L r :

Distance from rear axle to center of the mass (in m)

C f :

Front tire cornering stiffness (in kN/rad)

C r :

Rear tire cornering stiffness (in kN/rad)

V :

Velocity (in m/s)

V x :

Velocity along X axis (in m/s)

V y :

Velocity along Y axis (in m/s)

ψ :

Yaw angle (in °)

β :

Slip angle at center (in °)

θ :

Heading angle (in °)

δ :

Front wheel steering angle (in °)

α f :

Slip angle of front tyer (in °)

α r :

Slip angle of the rear tyer (in °)

R :

Tire radius (in m)

T w :

Braking wheel torque (in N m)

T b :

Brake torque (in N m)

F yf :

Front tire lateral force (in N)

F yr :

Rear tire lateral force (in N)

u :

Command control torque (in N m)

s :

Sliding manifold

V :

Lyapunov function

A f :

Longitudinal drag area (in m2)

C d :

Longitudinal drag coefficient

C l :

Longitudinal lift coefficient

C pm :

Longitudinal drag pitch moment

μ :

Nominal friction scaling factor

P abs :

Absolute pressure (in Pa)

g :

Gravitational acceleration (in m2)

References

  1. Alghodhaifi H, Lakshmanan S (2021) Autonomous vehicle evaluation: a comprehensive survey on modeling and simulation approaches. IEEE Access 9:151531–151566. https://doi.org/10.1109/ACCESS.2021.3125620

    Article  Google Scholar 

  2. Yurtsever E, Lambert J, Carballo A, Takeda K (2020) A survey of autonomous driving: common practices and emerging technologies. IEEE Access 8:58443–58469. https://doi.org/10.1109/ACCESS.2020.2983149

    Article  Google Scholar 

  3. Kebbati Y, Ait-Oufroukh N, Ichala D, Vigneron V (2022) Lateral control for autonomous wheeled vehicles: a technical review. Asian J Control. https://doi.org/10.1002/asjc.2980

    Article  Google Scholar 

  4. Dixit S, Fallah S, Montanaro U, Dianati M, Stevens A, Mccullough F, Mouzakitis A (2018) Trajectory planning and tracking for autonomous overtaking: state-of-the-art and future prospects. Annu Rev Control 45:76–86. https://doi.org/10.1016/j.arcontrol.2018.02.001

    Article  MathSciNet  Google Scholar 

  5. Li L, Li J, Zhang S (2021) Review article: state-of-the-art trajectory tracking of autonomous vehicles. Mech Sci 12:419–432. https://doi.org/10.5194/ms-12-419-2021

    Article  Google Scholar 

  6. Wang Y, Gao S, Wang Y, Wang P, Zhou Y, Xu Y (2021) Robust trajectory tracking control for autonomous vehicle subject to velocity-varying and uncertain lateral disturbance. Arch Transp. https://doi.org/10.5604/01.3001.0014.7480

    Article  Google Scholar 

  7. Farag W (2020) Complex trajectory tracking using PID control for autonomous driving. Int J Intell Transp Syst Res 18:356–366. https://doi.org/10.1007/s13177-019-00204-2

    Article  Google Scholar 

  8. Yang J, Ma R, Zhang Y, Zhao C (2012) Sliding mode control for trajectory tracking of intelligent vehicle. Phys Procedia 33:1160–1167. https://doi.org/10.1016/j.phpro.2012.05.191

    Article  Google Scholar 

  9. Chen J, Zhan W, Tomizuka M (2019) Autonomous driving motion planning with constrained iterative LQR. IEEE Trans Intell Veh 4(2):244–254. https://doi.org/10.1109/TIV.2019.2904385

    Article  Google Scholar 

  10. Kapania NR, Gerdes JC (2015) Design of a feedback feedforward steering controller for accurate path tracking and stability at the limits of handling. Veh Syst Dyn 53(12):1687–1704. https://doi.org/10.1080/00423114.2015.1055279

    Article  Google Scholar 

  11. Khasawneh L, Das M (2021) Lateral trajectory tracking control using backstep** method for autonomous vehicles. In: IEEE international midwest symposium on circuits and systems (MWSCAS), Lansing, MI, USA, pp 1013–1016. https://doi.org/10.1109/MWSCAS47672.2021.9531768

  12. Ao D, Huang W, Wong PK, Li J (2021) Robust backstep** super-twisting sliding mode control for autonomous vehicle path following. IEEE Access 9:123165–123177. https://doi.org/10.1109/ACCESS.2021.3110435

    Article  Google Scholar 

  13. Bejarbaneh EY, Masoumnezhad M, Armaghani DJ, Pham BT (2020) Design of robust control based on linear matrix inequality and a novel hybrid PSO search technique for autonomous underwater vehicle. Appl Ocean Res 101:102231. https://doi.org/10.1016/j.apor.2020.102231

    Article  Google Scholar 

  14. Rafaila RC, Livint G (2016) H-infinity control of automatic vehicle steering. In: International conference and exposition on electrical and power engineering (EPE), Iasi, Romania, pp 031–036. https://doi.org/10.1109/ICEPE.2016.7781297

  15. Krook J, Zita A, Kianfar R, Mohajerani S, Fabian M (2018) Modeling and synthesis of the lane change function of an autonomous vehicle. IFAC-PapersOnLine 51(7):133–138. https://doi.org/10.1016/j.ifacol.2018.06.291

    Article  Google Scholar 

  16. Tan X, Liu D, **ong H (2022) Optimal control method of path tracking for four-wheel steering vehicles. MDPI Actuators 11(2):61. https://doi.org/10.3390/act11020061

    Article  Google Scholar 

  17. Wang H, Liu B, ** X, An Q (2019) Path tracking control for autonomous vehicles based on an improved MPC. IEEE Access 7:161064–161073. https://doi.org/10.1109/ACCESS.2019.2944894

    Article  Google Scholar 

  18. Awad N, Lasheen A, Elnaggar M, Kamel A (2022) Model predictive control with fuzzy logic switching for path tracking of autonomous vehicles. ISA Trans 129(Part A):193–205. https://doi.org/10.1016/j.isatra.2021.12.022

    Article  Google Scholar 

  19. Stork M, Pinker J, Weissar P (2019) Adaptive control system for autonomous vehicle path following. In: International conference on applied electronics (AE), Pilsen, Czech Republic, pp 1–4. https://doi.org/10.23919/AE.2019.8867003

  20. Shan Y, Zheng B, Chen L, Chen D (2020) A reinforcement learning-based adaptive path tracking approach for autonomous driving. IEEE Trans Veh Technol 69(10):10581–10595. https://doi.org/10.1109/TVT.2020.3014628

    Article  Google Scholar 

  21. Fényes D, Hegedus T, Németh B, Gáspár P (2021) Robust control design for autonomous vehicles using neural network-based model-matching approach. MDPI Energ 14(21):7438. https://doi.org/10.3390/en14217438

    Article  Google Scholar 

  22. Allou S, Zennir Y, Belmeguenai A (2017) Fuzzy logic controller for autonomous vehicle path tracking. In: 18th international conference on sciences and techniques of automatic control and computer engineering (STA), Monastir, Tunisia, pp 328–333. https://doi.org/10.1109/STA.2017.8314969

  23. Zhang C, Hu J, Qiu J, Yang W, Sun H, Chen Q (2019) A novel fuzzy observer-based steering control approach for path tracking in autonomous vehicles. IEEE Trans Fuzzy Syst 27(2):278–290. https://doi.org/10.1109/TFUZZ.2018.2856187

    Article  Google Scholar 

  24. Lakhekar GV, Waghmare LM, Roy RG (2019) Disturbance observer-based fuzzy adapted S-surface controller for spatial trajectory tracking of autonomous underwater vehicle. IEEE Trans Intell Veh 4(4):622–636. https://doi.org/10.1109/TIV.2019.2938082

    Article  Google Scholar 

  25. Liu Y, Xu Q, Guo H (2022) A type-2 fuzzy approach to driver-automation shared driving lane kee** control of semi-autonomous vehicles under imprecise premise variable. Chin J Mech Eng 35:46. https://doi.org/10.1186/s10033-022-00706-3

    Article  Google Scholar 

  26. Lee Y, Zak SH (2002) Genetic fuzzy tracking controllers for autonomous ground vehicles. In: Proceedings of the 2002 American control conference (IEEE Cat. No.CH37301), Anchorage, AK, USA, vol 3, pp 2144–2149. https://doi.org/10.1109/ACC.2002.1023954

  27. Ji X, He X, Lv C, Liu Y, Wu J (2018) Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits. Control Eng Pract 76:41–53. https://doi.org/10.1016/j.conengprac.2018.04.007

    Article  Google Scholar 

  28. Lakhekar GV, Waghmare LM, Jadhav PG, Roy RG (2020) Robust diving motion control of an autonomous underwater vehicle using adaptive neuro-fuzzy sliding mode technique. IEEE Access 8:109891–109904. https://doi.org/10.1109/ACCESS.2020.3001631

    Article  Google Scholar 

  29. Lo JC, Kuo YH (1998) Decoupled fuzzy sliding-mode control. IEEE Trans Fuzzy Syst 6(3):426–435. https://doi.org/10.1109/91.705510

    Article  Google Scholar 

  30. Hu J, Zhang Y, Rakheja S (2022) Adaptive trajectory tracking for car-like vehicles with input constraints. IEEE Trans Ind Electron 69(3):2801–2810. https://doi.org/10.1109/TIE.2021.3068672

    Article  Google Scholar 

  31. Roopaei M, Jahromi MZ (2009) Chattering-free fuzzy sliding mode control in MIMO uncertain systems. Nonlinear Anal Theory Methods Appl 71(10):4430–4437. https://doi.org/10.1016/j.na.2009.02.132

    Article  MathSciNet  Google Scholar 

  32. Wang B, Lei Y, Fu Y, Geng X (2022) Autonomous vehicle trajectory tracking lateral control based on the terminal sliding mode control with radial basis function neural network and fuzzy logic algorithm. Mech Sci 13:713–724. https://doi.org/10.5194/ms-13-713-2022

    Article  Google Scholar 

  33. Sun Z, Zheng J, Man Z, Wang H (2016) Robust control of a vehicle steer-by-wire system using adaptive sliding mode. IEEE Trans Ind Electron 63(4):2251–2262. https://doi.org/10.1109/TIE.2015.2499246

    Article  Google Scholar 

  34. Lakhekar GV, Waghmare LM (2022) Robust self-organising fuzzy sliding mode-based path-following control for autonomous underwater vehicles. J Mar Eng Technol. https://doi.org/10.1080/20464177.2022.2120448

    Article  Google Scholar 

  35. Hwang CL, Yang CC, Hung JY (2018) Path tracking of an autonomous ground vehicle with different payloads by hierarchical improved fuzzy dynamic sliding-mode control. IEEE Trans Fuzzy Syst 26(2):899–914. https://doi.org/10.1109/TFUZZ.2017.2698370

    Article  Google Scholar 

  36. Rajamani R (2012) Vehicle dynamics and control. Springer, Berlin. https://doi.org/10.1007/978-1-4614-1433-9

    Book  Google Scholar 

  37. Nguyen AT, Rath J, Guerra TM, Palhares R, Zhang H (2021) Robust set-invariance based fuzzy output tracking control for vehicle autonomous driving under uncertain lateral forces and steering constraints. IEEE Trans Intell Transp Syst 22(9):5849–5860. https://doi.org/10.1109/TITS.2020.3021292

    Article  Google Scholar 

  38. Menhour L, d'Andréa Novel B, Boussard C, Fliess M, Mounier H (2011) Algebraic nonlinear estimation and flatness-based lateral/longitudinal control for automotive vehicles. In: 14th international IEEE conference on intelligent transportation systems (ITSC), pp 463–468. https://doi.org/10.1109/ITSC.2011.6083044.

  39. Rigatos GG (2015) Nonlinear control and filtering using differential flatness approaches. Stud Syst Decis Control. https://doi.org/10.1007/978-3-319-16420-5

    Article  Google Scholar 

  40. Yi J, Zhang Y, Song D (2009) Autonomous motorcycles for agile maneuvers, part I: dynamic modeling. In: Proceedings of the 48h IEEE conference on decision and control (CDC) held jointly with 2009 28th Chinese control conference, pp 4613–4618. https://doi.org/10.1109/CDC.2009.5399495

  41. Rigatos G, Busawon K (2018) Robotic manipulators and vehicles: control, estimation and filtering. Springer, Cham. Studies in Systems, Decision and Control, vol 152. https://doi.org/10.1007/978-3-319-77851-8

  42. Zhang L, Ding H, Shi J, Huang Y, Chen H, Guo K, Li Q (2020) An adaptive backstep** sliding mode controller to improve vehicle maneuverability and stability via torque vectoring control. IEEE Trans Veh Technol 69(3):2598–2612. https://doi.org/10.1109/TVT.2019.2950219

    Article  Google Scholar 

  43. Guo J, Luo Y, Li K (2019) Robust gain-scheduling automatic steering control of unmanned ground vehicle under velocity-varying motion. Veh Syst Dyn 57(4):2019. https://doi.org/10.1080/00423114.2018.1475677

    Article  Google Scholar 

  44. Wu Y, Wang L, Zhang J, Li F (2019) Path following control of autonomous ground vehicle based on nonsingular terminal sliding mode and active disturbance rejection control. IEEE Trans Veh Technol 68(7):6379–6390. https://doi.org/10.1109/TVT.2019.2916982

    Article  Google Scholar 

  45. Imine H, Madani T (2011) Sliding-mode control for automated lane guidance of heavy vehicle. Int J Robust Nonlinear Control 23(1):67–76. https://doi.org/10.1002/rnc.1818

    Article  MathSciNet  Google Scholar 

  46. Chen J, Shuai Z, Zhang H, Zhao W (2021) Path following control of autonomous four-wheel-independent-drive electric vehicles via second-order sliding mode and nonlinear disturbance observer techniques. IEEE Trans Ind Electron 68(3):2460–2469. https://doi.org/10.1109/TIE.2020.2973879

    Article  Google Scholar 

  47. Tagne G, Talj R, Charara A (2013) Higher-order sliding mode control for lateral dynamics of autonomous vehicles, with experimental validation. In: 2013 IEEE intelligent vehicles symposium (IV), pp 678–683. https://doi.org/10.1109/IVS.2013.6629545.

  48. Pukdeboon C, Zinober ASI, Thein MWL (2010) Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers. IEEE Trans Ind Electron 57(4):1436–1444. https://doi.org/10.1109/TIE.2009.2030215

    Article  Google Scholar 

  49. Levant A (2005) Quasi-continuous high-order sliding-mode controllers. IEEE Trans Autom Control 50(11):1812–1816. https://doi.org/10.1109/TAC.2005.858646

    Article  MathSciNet  Google Scholar 

  50. Hatamleh KS, Jaradat MA, Younes AB, Al-Shabi M, Hafez OA (2021) Quasi-continuous second order sliding mode control of revolute–revolute manipulator with noisy feedback signals and modelling uncertainties. J Intell Rob Syst 103:35. https://doi.org/10.1007/s10846-021-01464-5

    Article  Google Scholar 

  51. Mien V, Kang HJ, Shin KS (2013) Adaptive fuzzy quasi-continuous high-order sliding mode controller for output feedback tracking control of robot manipulators. Proc Inst Mech Eng C J Mech Eng Sci 228(1):90–107. https://doi.org/10.1177/0954406213490465

    Article  Google Scholar 

  52. Nguyen AT, Sentouh C, Popieul JC (2018) Fuzzy steering control for autonomous vehicles under actuator saturation: design and experiments. J Frankl Inst 355(18):9374–9395. https://doi.org/10.1016/j.jfranklin.2017.11.027

    Article  MathSciNet  Google Scholar 

  53. Kodagoda KRS, Wijesoma WS, Teoh EK (2002) Fuzzy speed and steering control of an AGV. IEEE Trans Control Syst Technol 10(1):112–120. https://doi.org/10.1109/87.974344

    Article  Google Scholar 

  54. Hu C, Chen Y, Wang J (2021) Fuzzy observer-based transitional path-tracking control for autonomous vehicles. IEEE Trans Intell Transp Syst 22(5):3078–3088. https://doi.org/10.1109/TITS.2020.2979431

    Article  Google Scholar 

  55. Shet RM, Iyer NC, Jeppu Y (2021) Fault tolerant control system for autonomous vehicle: a survey. J Adv Res Dyn Control Syst 12(8):813–830. https://doi.org/10.5373/JARDCS/V12SP8/20202585

    Article  Google Scholar 

  56. Naranjo JE, Gonzalez C, Garcia R, de Pedro T (2008) Lane-change fuzzy control in autonomous vehicles for the overtaking maneuver. IEEE Trans Intell Transp Syst 9(3):438–450. https://doi.org/10.1109/TITS.2008.922880

    Article  Google Scholar 

  57. Naranjo JE, Sotelo A, Gonzalez C, Garcia R, Pedro TD (2007) Using fuzzy logic in automated vehicle control. IEEE Intell Syst 22(1):36–45. https://doi.org/10.1109/MIS.2007.18

    Article  Google Scholar 

  58. Cao M, Hall EL (1998) Fuzzy logic control for an automated guided vehicle. In: Proceedings Volume 3522, intelligent robots and computer vision XVII: algorithms, techniques, and active vision. https://doi.org/10.1117/12.325776

  59. Pérez J, Milanés V, Onieva E (2011) Cascade architecture for lateral control in autonomous vehicles. IEEE Trans Intell Transp Syst 12(1):73–82. https://doi.org/10.1109/TITS.2010.2060722

    Article  Google Scholar 

  60. Lakhekar GV, Waghmare LM (2017) Robust maneuvering of autonomous underwater vehicle: an adaptive fuzzy PI sliding mode control. Intel Serv Robot 10(3):195–212. https://doi.org/10.1007/s11370-017-0220-2

    Article  Google Scholar 

  61. Hung L-C, Lin H-P, Chung H-Y (2007) Design of self-tuning fuzzy sliding mode control for TORA system. Expert Syst Appl 32(1):201–212. https://doi.org/10.1016/j.eswa.2005.11.008

    Article  Google Scholar 

  62. Hung LC, Chung HY (2007) Decoupled sliding-mode with fuzzy-neural network controller for nonlinear systems. Int J Approx Reason 46(2007):74–97

    Article  MathSciNet  Google Scholar 

  63. Lhee CG, Park JS, Ahn HS, Kim DH (2001) Sliding mode-like fuzzy logic control with self-tuning the dead zone parameters. IEEE Trans Fuzzy Syst 9(2):343–348. https://doi.org/10.1109/91.919255

    Article  Google Scholar 

  64. dSPACE manuals (2022) SCALEXIO, ASM 10.1, ConfigurationDesk 22.1, ModelDesk 5.7, MotionDesk 4.10, ControlDesk 7.6, RTI CAN MultiMessage Blockset 5.8, Release 2022-A- May 2022

  65. Deter D, Wang C, Cook A, Perry NK (2021) Simulating the autonomous future: a look at virtual vehicle environments and how to validate simulation using public data sets. IEEE Signal Process Mag 38(1):111–121. https://doi.org/10.1109/MSP.2020.2984428

    Article  Google Scholar 

  66. Iyer NC, Gireesha HM, Shet RM, Nissimgoudar P, Mane V (2020) Autonomous driving platform: an initiative under institutional research project. Procedia Comput Sci 172:875–880. https://doi.org/10.1016/j.procs.2020.05.126

    Article  Google Scholar 

  67. Lakhekar GV, Waghmare LM (2014) Dynamic fuzzy sliding mode control of underwater vehicles, advances and applications in sliding mode control systems. Book Series: Studies in computational intelligence, vol 576. Springer, pp 279–304

  68. The MathWorks, Inc. (2022) MATLAB version: 9.13.0 (R2022b). Accessed: January 01, 2023. Available: https://www.mathworks.com

  69. Chakraborty S, Mazuela M, Tran DD, Corea-Araujo JA, Lan Y, Loiti AA, Garmier P, Aizpuru I, Hegazy O (2020) Scalable modeling approach and robust hardware-in-the-loop testing of an optimized interleaved bidirectional HV DC/DC converter for electric vehicle drivetrains. IEEE Access 8:115515–115536. https://doi.org/10.1109/ACCESS.2020.3004238

    Article  Google Scholar 

  70. Li SE, Chen H, Li R, Liu Z, Wang Z, **n Z (2020) Predictive lateral control to stabilise highly automated vehicles at tire-road friction limits. Veh Syst Dyn 58:768–786. https://doi.org/10.1080/00423114.2020.1717553

    Article  Google Scholar 

  71. Hu J, Zhang Y, Rakheja S (2023) Adaptive lane change trajectory planning scheme for autonomous vehicles under various road frictions and vehicle speeds. IEEE Trans Intell Veh 8(2):1252–1265. https://doi.org/10.1109/TIV.2022.3178061

    Article  Google Scholar 

  72. Kim YH, Ahn SC, Kwon WH (2000) Computational complexity of general fuzzy logic control and its simplification for a loop controller. Fuzzy Sets Syst 111(2):215–224

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by the Center of Intelligent Mobility (CIM), KLE Technological University, Hubli, Karnataka and collaborated with Department of Instrumentation and Control, COEP Technological University, Pune, Maharashtra. The authors would like to express their sincere gratitude to the Editor-in-Chief and anonymous reviewers whose constructive comments have helped us to significantly improve both the technical quality and presentation of this manuscript. Authors are deeply grateful to Head, Department of Instrumentation and Control engineering, COEP Technological University, Pune, M.S., for utilization of laboratory to carrying out research work.

Funding

No financial funding received for the work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, RMS, GVL; Methodology, RMS, GVL; Software, RMS, GVL; validation, RMS, GVL; Formal analysis, GVL, NCI; Investigation, RMS and GVL.; Resources, NCI.; Data curation, RMS and GVL; Writing—original draft preparation, RMS and GVL; Writing—review and editing, RMS, GVL and NCI.; Visualization, RMS and GVL.; Supervision, NCI; Project administration, NCI; Funding acquisition, NCI. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Raghavendra M. Shet.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shet, R.M., Lakhekar, G.V. & Iyer, N.C. Design of quasi fuzzy sliding mode based maneuvering of autonomous vehicle. Int. J. Dynam. Control 12, 1963–1986 (2024). https://doi.org/10.1007/s40435-023-01308-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01308-0

Keywords

Navigation