Log in

The study of the stacking sequence parameters on critical speed of hybrid composite rotor with experimental and numerical analysis

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Composite rotors can be widely used in industries related to rotating machinery due to their lightness and suitable mechanical properties. Investigating the vibration of the rotating composite shaft is essential for proper performance. In this paper, the dynamic behavior of a hybrid composite rotor is studied with experimental and numerical methods. For this purpose, a 28 layers hollow hybrid composite shaft (HCS) with continuously extended fiber reinforcement consisting of carbon/epoxy and glass/epoxy layers with an asymmetrical stacking sequence is modeled and built using the filament winding method. The kinetic energy and strain potential energy of the HCS are calculated considering the modified equivalent modulus beam theory. The governing equations of the HCS are derived using Lagrange's equations. The first three natural frequencies of the HCS are extracted in the free-free state performing the modal analysis test. The results of the numerical solution obtained from the HCS simulation in finite element software and the results extracted from solving the equations by coding using MATLAB script are compared with the natural frequencies of the modal analysis test and validation is done. Then, the experimental test of the hybrid composite rotor with two aluminum disks symmetrical with respect to bearings is performed, and the run-up/coast-down diagram is extracted. The hybrid composite rotor is simulated in ANSYS software and its Campbell diagram is obtained. The critical speeds derived from the simulation are compared with the experimental test, and the correctness of the results is confirmed. Finally, the effect of the stacking sequence and the arrangement of layers using carbon/epoxy and glass/epoxy of the rotating HCS is studied on forward and backward whirling frequencies and critical speeds. By changing the arrangement and proper stacking sequence of the HCS, the critical speeds can be increased, and the resonance of the composite rotor can be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Del Claro VT, Sousa MS Jr, Barbosa PC, Cavalini AA Jr, Steffen V Jr (2022) Modeling of laminated thick-walled shaft rotor accounting for onboard dynamics. Arch Appl Mech 92(10):2825–2841. https://doi.org/10.1007/s00419-022-02194-2

    Article  Google Scholar 

  2. Shen M, Wang Q, Wang R, Guan X (2022) Vibration analysis of rotating functionally graded graphene platelet reinforced composite shaft-disc system under various boundary conditions. Eng Anal Bound Elem 144:380–398. https://doi.org/10.1016/j.enganabound.2022.08.030

    Article  MathSciNet  Google Scholar 

  3. Bilalis EP, Keramidis MS, Tsouvalis NG (2022) Structural design optimization of composite materials drive shafts. Mar Struct 84:103194. https://doi.org/10.1016/j.marstruc.2022.103194

    Article  Google Scholar 

  4. Barbosa PC, Del Claro VT, Sousa MS Jr, Cavalini AA Jr, Steffen V Jr (2020) Experimental analysis of the SHBT approach for the dynamic modeling of a composite hollow shaft. Compos Struct 236:111892. https://doi.org/10.1016/j.compstruct.2020.111892

    Article  Google Scholar 

  5. Ri K, Choe K, Han P, Wang Q (2019) The effects of coupling mechanisms on the dynamic analysis of composite shaft. Compos Struct 224:111040. https://doi.org/10.1016/j.compstruct.2019.111040

    Article  Google Scholar 

  6. Zhong W, Gao F, Ren Y (2019) Generalized differential quadrature method for free vibration analysis of a rotating composite thin-walled shaft. Math Probl Eng. https://doi.org/10.1155/2019/1538329

    Article  MathSciNet  Google Scholar 

  7. Shaban Ali Nezhad H, Hosseini SAA, Moradi Tiaki M (2019) Combination resonances of spinning composite shafts considering geometric nonlinearity. J Braz Soc Mech Sci Eng 41:1–21. https://doi.org/10.1007/s40430-019-2009-z

    Article  Google Scholar 

  8. Kafi HR, Hosseini SAA (2019) Dynamic analysis of nonlinear rotating composite shafts excited by non-ideal energy source. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 99(5):e201800279. https://doi.org/10.1002/zamm.201800279

    Article  MathSciNet  Google Scholar 

  9. Almuslmani M, Ganesan R (2019) Vibration of tapered composite driveshaft based on the hierarchical finite element analysis. Compos Struct 209:905–927. https://doi.org/10.1016/j.compstruct.2018.10.053

    Article  Google Scholar 

  10. Dixit AC, Sridhara BK, Achutha MV (2019) Evaluation of critical speed for aluminum–boron carbide metal matrix composite shaft. In: Innovative Design, Analysis, and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018). Springer Singapore, Vol 2, pp 527–534. https://doi.org/10.1007/978-981-13-2718-6_51

  11. Sun Z, **ao J, Yu X, Tusiime R, Gao H, Min W, Tao L, Qi L, Zhang H, Yu M (2020) Vibration characteristics of carbon-fiber-reinforced composite drive shafts fabricated using filament winding technology. Compos Struct 241:111725. https://doi.org/10.1016/j.compstruct.2019.111725

    Article  Google Scholar 

  12. Tariq M, Nisar S, Shah A, Mairaj T, Akbar S, Khan MA, Khan SZ (2018) Effect of carbon fiber winding layer on torsional characteristics of filament wound composite shafts. J Braz Soc Mech Sci Eng 40:1–8. https://doi.org/10.1007/s40430-018-1099-3

    Article  Google Scholar 

  13. Zhang CJ, Ren YS, Ji SJ (2018) Research on the lateral nonlinear vibration behavior of composite shaft disk rotor system. Appl Mech Mater 875:149–161. https://doi.org/10.4028/www.scientific.net/AMM.875.149

    Article  Google Scholar 

  14. Arab SB, Rodrigues JD, Bouaziz S, Haddar M (2018) Stability analysis of internally damped rotating composite shafts using a finite element formulation. C R Méc 346(4):291–307. https://doi.org/10.1016/j.crme.2018.01.002

    Article  Google Scholar 

  15. Shaban Ali Nezhad H, Hosseini SAA, Zamanian M (2017) Flexural–flexural–extensional–torsional vibration analysis of composite spinning shafts with geometrical nonlinearity. Nonlinear Dyn 89:651–690. https://doi.org/10.1007/s11071-017-3479-0

    Article  Google Scholar 

  16. Cavalini AA, Guimarães TA, da Silva BR, Steffen V (2017) Analysis of the dynamic behavior of a rotating composite hollow shaft. Lat Am J Solids Struct 14:1–16. https://doi.org/10.1590/1679-78253168

    Article  Google Scholar 

  17. Arab SB, Rodrigues JD, Bouaziz S, Haddar M (2017) A finite element based on equivalent single layer theory for rotating composite shafts dynamic analysis. Compos Struct 178:135–144. https://doi.org/10.1016/j.compstruct.2017.06.052

    Article  Google Scholar 

  18. Ren Y, Zhang Y (2016) Free vibration and dam** of rotating composite shaft with a constrained layer dam**. Shock Vib. https://doi.org/10.1155/2016/9045460

    Article  Google Scholar 

  19. Ren Y, Zhang Y, Zhang X (2015) Vibration and stability of internally damped rotating composite Timoshenko shaft. J Vibroeng 17(8):4404–4420

    Google Scholar 

  20. Gupta K (2015) Composite shaft rotor dynamics: an overview. Vibration Engineering and Technology of Machinery: Proceedings of VETOMAC X 2014, held at the University of Manchester, UK, September 9–11, 2014, 2015:79–94. https://doi.org/10.1007/978-3-319-09918-7_6

  21. Montagnier O, Hochard C (2014) Dynamics of a supercritical composite shaft mounted on viscoelastic supports. J Sound Vib 333(2):470–484. https://doi.org/10.1016/j.jsv.2013.09.021

    Article  Google Scholar 

  22. Sino R, Baranger TN, Chatelet E, Jacquet G (2008) Dynamic analysis of a rotating composite shaft. Compos Sci Technol 68(2):337–345. https://doi.org/10.1016/j.compscitech.2007.06.019

    Article  Google Scholar 

  23. Ravishankar B, Nayak SK, Kader MA (2019) Hybrid composites for automotive applications–A review. J Reinf Plast Compos 38(18):835–845. https://doi.org/10.1177/0731684419849708

    Article  Google Scholar 

  24. Udatha P, Sekhar AS, Velmurugan R (2019) The effect of CNT to enhance the dynamic properties of hybrid composite tube shafts. Mech Adv Mater Struct 26(1):88–92. https://doi.org/10.1080/15376494.2018.1534172

    Article  Google Scholar 

  25. Nazari MM, Rahi A, Sarfaraz Khabbaz R (2022) The effect of stacking sequence parameters on the vibration behavior of rotating hybrid composite shaft. Amirkabir J Mech Eng 54(10):4–4. https://doi.org/10.22060/mej.2022.21101.7378

    Article  Google Scholar 

  26. Gubran HB, Gupta K (2005) The effect of stacking sequence and coupling mechanisms on the natural frequencies of composite shafts. J Sound Vib 282(1–2):231–248. https://doi.org/10.1016/j.jsv.2004.02.022

    Article  Google Scholar 

  27. Ha SK, Kim MH, Han SC, Sung TH (2006) Design and spin test of a hybrid composite flywheel rotor with a split type hub. J Compos Mater 40(23):2113–2130. https://doi.org/10.1177/0021998306061324

    Article  Google Scholar 

  28. Ha SK, Kim SJ, Nasir SU, Han SC (2012) Design optimization and fabrication of a hybrid composite flywheel rotor. Compos Struct 94(11):3290–3299. https://doi.org/10.1016/j.compstruct.2012.04.015

    Article  Google Scholar 

  29. Sevkat E, Tumer H, Kelestemur MH, Dogan S (2014) Effect of torsional strain-rate and lay-up sequences on the performance of hybrid composite shafts. Mater Des 60:310–319. https://doi.org/10.1016/j.matdes.2014.03.069

    Article  Google Scholar 

  30. Gonsalves TH, Garje Channabasappa MK, Motagondanahalli Rangarasaiah R (2021) Hybrid composite shaft of High-Speed Rotor-Bearing System-A rotor dynamics preview. Mech Based Des Struct Mach 49(3):440–462. https://doi.org/10.1080/15397734.2020.1841003

    Article  Google Scholar 

  31. Daniel IM, Ishai O, Daniel IM, Daniel I (2006) Engineering mechanics of composite materials. Oxford University Press, New York

    Google Scholar 

  32. Chang MY, Chen JK, Chang CY (2004) A simple spinning laminated composite shaft model. Int J Solids Struct 41(3–4):637–662. https://doi.org/10.1016/j.ijsolstr.2003.09.043

    Article  Google Scholar 

  33. Ri K, Han P, Kim I, Kim W, Cha H (2020) Stability analysis of composite shafts considering internal dam** and coupling effect. Int J Struct Stab Dyn 20(11):2050118. https://doi.org/10.1142/S0219455420501187

    Article  MathSciNet  Google Scholar 

  34. Freund J, Karakoç A (2016) Shear and torsion correction factors of Timoshenko beam model for generic cross sections. Res Eng Struct Mater 2(1):19–27. https://doi.org/10.17515/resm2015.19me0827

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Rahi.

Additional information

Technical Editor: Aldemir Cavallini Jr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, M.M., Rahi, A. & Sarfaraz Khabbaz, R. The study of the stacking sequence parameters on critical speed of hybrid composite rotor with experimental and numerical analysis. J Braz. Soc. Mech. Sci. Eng. 46, 291 (2024). https://doi.org/10.1007/s40430-024-04826-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04826-w

Keywords

Navigation