Log in

Numerical investigation of heat transfer and thermo-hydraulic performance of solar air heater with different ribs and their machine learning-based prediction

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The utilization of artificial roughness, in the form of repeating ribs on a surface, is a proficient method for enhancing the rate of heat transmission. This study entailed a numerical analysis of heat transfer and thermo-hydraulic performance in a solar air heater, which incorporated three types of ribs on the absorber plate. Applying a consistent heat flux of 1000 W m−2 to the upper surface of the plate generated flow across 141 distinct Reynolds numbers ranging from 4000 to 18,000 and at varied relative roughness of 7.14, 10.71, and 14.29. Through numerical investigations with machine learning techniques like support vector machine (SVM), artificial neural network (ANN), and extreme gradient boosting (XGB), the Nusselt number, friction factor, and thermo-hydraulic performance parameters (THPP) were predicted. The maximum value of the friction factor on a corrugated absorber plate with a triangular section is achieved at P/e = 7.14 and a Reynolds number of 7200. It has been found that the highest Nusselt number ratio of 2.09 corresponds to a relative roughness pitch of 7.14 at a Reynolds number of 7500 within the triangular section. In addition, the maximum THPP value of 1.77 was obtained utilizing a semi-circle section, P/e = 14.29, and a Reynolds number of 18,000. The XGB model provided the most accurate estimates for the Nusselt number (R2 = 0.9993) and friction factor (R2 = 0.9985).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

A:

Duct cross-section area (m2)

Dh :

Hydraulic diameter (mm)

e:

ERib height (mm)

e/Dh :

Relative roughness height

f:

Friction factor

H:

Dept of duct (mm)

h:

Convective heat transfer coefficient (W/m2 K)

k:

Thermal conductivity of air (W/m K)

L1 :

Entrance length (mm)

L2 :

Test length (mm)

L3 :

Exit length (mm)

Nu:

Nusselt Number

P:

Rib pitch (mm)

P/e:

Relative roughness

Pr:

Prandtl Number

Pw:

Duct cross-section perimeter (m)

Re:

Reynolds Number

T:

Temperature (K)

W:

Width of duct (mm)

ΔP:

Pressure drop (Pa)

\(u\) :

Airflow velocity in x-direction (m/s)

\(v\) :

Airflow velocity in y-direction (m/s)

\(\alpha\) :

Thermal diffusivity

\(\mu\) :

Dynamic viscosity (kg/m s)

\(\rho\) :

Density of air (kg/m3)

\(\vartheta\) :

Kinematic viscosity (m2/s)

r:

Roughness

s:

Smooth

t:

Turbulent

References

  1. Shetty SP, Madhwesh N, Vasudeva Karanth K (2021) Numerical analysis of a solar air heater with circular perforated absorber plate. Sol Energy 215:416–433. https://doi.org/10.1016/j.solener.2020.12.053.

  2. Yilmaz A, Er A (2021) Thermal analysis of solar air collectors designed in different types with different flow rates using aluminum cans. Energy Sources. Part A Recover Util Environ Eff 44:5545–5561. https://doi.org/10.1080/15567036.2021.2006831

    Article  CAS  Google Scholar 

  3. Yildiz ME, Yilmaz A (2022) Investigation of the efficiency of air heated solar collectors with different geometries by experimental method. Proc Inst Mech Eng Part A J Power Energy 236:1389–1402. https://doi.org/10.1177/09576509221101971.

    Article  CAS  Google Scholar 

  4. Singh Gill R, Singh Hans V, Pal Singh R (2021) Optimization of artificial roughness parameters in a solar air heater duct roughened with hybrid ribs. Appl Therm Eng, 116871. https://doi.org/10.1016/j.applthermaleng.2021.116871.

  5. Yadav AS, Bhagoria JL (2014) A numerical investigation of turbulent flows through an artificially roughened solar air heater. Numer Heat Transf Part A Appl 65:679–698. https://doi.org/10.1080/10407782.2013.846187

    Article  ADS  Google Scholar 

  6. Yadav AS, Bhagoria JL (2014) A numerical investigation of square sectioned transverse rib roughened solar air heater. Int J Therm Sci 79:111–131. https://doi.org/10.1016/j.ijthermalsci.2014.01.008

    Article  Google Scholar 

  7. Yadav AS, Shrivastava V, Chouksey VK, Sharma A, Sharma SK, Dwivedi MK (2021) Enhanced solar thermal air heater: a numerical investigation. Mater Today Proc 47:2777–2783. https://doi.org/10.1016/j.matpr.2021.03.385

    Article  CAS  Google Scholar 

  8. Mahanand Y, Senapati JR (2021) Thermo-hydraulic performance analysis of a solar air heater (SAH) with quarter-circular ribs on the absorber plate: A comparative study. Int J Therm Sci 161:106747. https://doi.org/10.1016/j.ijthermalsci.2020.106747

    Article  Google Scholar 

  9. Hans VS, Saini RP, Saini JS (2009) Performance of artificially roughened solar air heaters—a review. Renew Sustain Energy Rev 13:1854–1869. https://doi.org/10.1016/j.rser.2009.01.030

    Article  Google Scholar 

  10. Yadav AS, Bhagoria JL (2013) A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate. Energy 55:1127–1142. https://doi.org/10.1016/j.energy.2013.03.066

    Article  Google Scholar 

  11. Sharma S, Singh R, Bhushan B (2021) CFD based thermal efficiency of square shape protruded roughened absorber plate for solar air heater. Energy Sources Part A Recover Util Environ Eff, pp 1–22. https://doi.org/10.1080/15567036.2021.1908460.

  12. Singh I, Singh S (2018) CFD analysis of solar air heater duct having square wave profiled transverse ribs as roughness elements. Sol Energy 162:442–453. https://doi.org/10.1016/j.solener.2018.01.019

    Article  ADS  Google Scholar 

  13. Zina B, Filali A, Benamara N, Laouedj S, Ahmed H (2020) Numerical simulation of heat transfer improvement of a new designed artificially roughened solar air heater using triangular ribs with semi-circular nooks. Energy Sources Part A Recover Util Environ Eff, pp 1–17. https://doi.org/10.1080/15567036.2020.1825564.

  14. Bhattacharyya S, Sarkar D, Roy R, Chakraborty S, Goel V, Almatrafi E (2021) Application of new artificial neural network to predict heat transfer and thermal performance of a solar air-heater tube. Sustain 13:7477. https://doi.org/10.3390/SU13137477.

  15. Shetty SP, Nayak S, Kumar S, Vasudeva Karanth K (2021) Thermo-hydraulic performance prediction of a solar air heater with circular perforated absorber plate using artificial neural network. Therm Sci Eng Prog 23:100886. https://doi.org/10.1016/J.TSEP.2021.100886.

  16. Said Z, Sharma P, Sundar LS, Li C, Tran DC, Khoa Pham ND, Nguyen XD (2022) Improving the thermal efficiency of a solar flat plate collector using MWCNT-Fe3O4/water hybrid nanofluids and ensemble machine learning. Case Stud Therm Eng 40:102448. https://doi.org/10.1016/J.CSITE.2022.102448.

  17. Ahmad MW, Reynolds J, Rezgui Y (2018) Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees. J Clean Prod 203:810–821. https://doi.org/10.1016/J.JCLEPRO.2018.08.207

    Article  Google Scholar 

  18. Alqaed S, Mustafa J, Sharifpur M, Alharthi MA (2022) Numerical simulation and artificial neural network modeling of exergy and energy of parabolic trough solar collectors equipped with innovative turbulators containing hybrid nanofluids. J Therm Anal Calorim. https://doi.org/10.1007/S10973-022-11538-7

    Article  Google Scholar 

  19. Kwon B, Ejaz F, Hwang LK (2020) Machine learning for heat transfer correlations. Int Commun Heat Mass Transf 116:104694. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2020.104694

    Article  Google Scholar 

  20. Gupta D, Solanki SC, Saini JS (1997) Thermohydraueic performance of solar air heaters with roughened absorber plates. Sol Energy 61:33–42. https://doi.org/10.1016/S0038-092X(97)00005-4

    Article  ADS  Google Scholar 

  21. A. Standard, ASHRAE 93 (2003) Method of testing to determine the thermal performance of solar collectors. American Society of Heating, Refrig. Air Cond. Eng. Atlanta, GA. 30329 (n.d.).

  22. Gawande VB, Dhoble AS, Zodpe DB, Chamoli S (2016) Experimental and CFD-based thermal performance prediction of solar air heater provided with right-angle triangular rib as artificial roughness. J Brazilian Soc Mech Sci Eng 38:551–579. https://doi.org/10.1007/s40430-015-0391-8

    Article  Google Scholar 

  23. Yadav AS, Bhagoria JL (2013) Heat transfer and fluid flow analysis of solar air heater: a review of CFD approach. Renew Sustain Energy Rev 23:60–79. https://doi.org/10.1016/J.RSER.2013.02.035

    Article  Google Scholar 

  24. Prajapati S, Naik N, Chandramohan VP (2022) Numerical solution of solar air heater with triangular corrugations for indirect solar dryer: influence of pitch and an optimized pitch of corrugation for enhanced performance. Sol Energy 243:1–12. https://doi.org/10.1016/J.SOLENER.2022.07.044.

    Article  ADS  Google Scholar 

  25. Webb R, Eckert E (1972) Application of rough surfaces to heat exchanger design. Int J Heat Mass Transf 15:1647–1658. https://www.sciencedirect.com/science/article/pii/0017931072900956. Accessed August 3, 2022.

  26. Singh Yadav A, Bhagoria JL (2013) Modeling and simulation of turbulent flows through a solar air heater having square-sectioned transverse rib roughness on the absorber plate. Sci. World J 2013:12. https://doi.org/10.1155/2013/827131.

  27. Ercan U (2022) Konut Kira Fiyatlarının Makine Öğrenmesi Yöntemleriyle Tahmin Edilmesi: Destek Vektör Regresyonu ve Yapay Sinir Ağları Karşılaştırması, in: Ampirik Yöntemlerle İktisadi ve Finans. Çözümlemeler, pp 373–390.

  28. Duman S, Elewi A, Yetgin Z (2022) Distance estimation from a monocular camera using face and body features. Arab J Sci Eng 47:1547–1557. https://doi.org/10.1007/S13369-021-06003-W/TABLES/3

    Article  Google Scholar 

  29. Puah BK, Chong LW, Wong YW, Begam KM, Khan N, Juman MA, Rajkumar RK (2021) A regression unsupervised incremental learning algorithm for solar irradiance prediction. Renew Energy 164:908–925. https://doi.org/10.1016/J.RENENE.2020.09.080

    Article  Google Scholar 

  30. van Engelen JE, Hoos HH (2020) A survey on semi-supervised learning. Mach Learn 109:373–440. https://doi.org/10.1007/S10994-019-05855-6/FIGURES/5

    Article  MathSciNet  Google Scholar 

  31. Perera ATD, Kamalaruban P (2021) Applications of reinforcement learning in energy systems. Renew Sustain Energy Rev 137:110618. https://doi.org/10.1016/J.RSER.2020.110618

    Article  Google Scholar 

  32. Ercan U (2021) The determinants of Turkey household catastrophic health expenditures: a different approach by data mining. Alphanumeric J. https://doi.org/10.17093/alphanumeric.940744.

  33. Pedregosa Fabianpedregosa F, Michel V, Grisel Oliviergrisel O, Blondel M, Prettenhofer P, Weiss R, Vanderplas J, Cournapeau D, Pedregosa F, Varoquaux G, Gramfort A, Thirion B, Grisel O, Dubourg V, Passos A, Brucher M, Perrot M, Édouardand A (2011) Duchesnay, Fré. Duchesnay Edouardduchesnay. Scikit-learn: Mach Learn Python J Mach Learn Res 12:2825–2830.

  34. Vapnik V (1995) The nature of statistical learning theory. Springer-Verlag, New York

    Book  Google Scholar 

  35. Peng H, Ling X (2015) Predicting thermal–hydraulic performances in compact heat exchangers by support vector regression. Int J Heat Mass Transf 84:203–213. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2015.01.017

    Article  Google Scholar 

  36. Kamsuwan C, Wang X, Seng LP, **an CK, Piemjaiswang R, Piumsomboon P, Pratumwal Y, Otarawanna S, Chalermsinsuwan B (2023) Simulation of nanofluid micro-channel heat exchanger using computational fluid dynamics integrated with artificial neural network. Energy Rep 9:239–247. https://doi.org/10.1016/J.EGYR.2022.10.412

    Article  Google Scholar 

  37. Nguyen G, Dlugolinsky S, Bobák M, Tran V, López García Á, Heredia I, Malík P, Hluchý L (2019) Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artif Intell Rev 52:77–124. https://doi.org/10.1007/s10462-018-09679-z.

  38. Pence I, Yıldırım R, Siseci Cesmeli M, Güngör A, Akyüz A (2023) Evaluation of machine learning approaches for estimating thermodynamic properties of new generation refrigerant R513A. Sustain Energy Technol Assess 55:102973. https://doi.org/10.1016/J.SETA.2022.102973.

  39. Yadav AS, Bhagoria JL (2014) A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate. Int J Heat Mass Transf 70:1016–1039. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.074

    Article  Google Scholar 

  40. Bezbaruah PJ, Rajat SD, Kumar Sarkar B (2019) Thermo-hydraulic performance augmentation of solar air duct using modified forms of conical vortex generators. Heat Mass Transf 55:1387–1403. https://doi.org/10.1007/s00231-018-2521-1.

    Article  CAS  Google Scholar 

  41. Singh Yadav A, Bhagoria JL (2015) Numerical investigation of flow through an artificially roughened solar air heater. Int J Ambient Energy 36:87–100. https://doi.org/10.1080/01430750.2013.823107.

    Article  CAS  Google Scholar 

  42. Mahanand Y, Senapati JR (2020) Thermal enhancement study of a transverse inverted-T shaped ribbed solar air heater. Int Commun Heat Mass Transf 119:104922. https://doi.org/10.1016/j.icheatmasstransfer.2020.104922

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulkadir Kocer.

Ethics declarations

Conflict of interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Technical Editor: Ahmad Arabkoohsar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocer, A. Numerical investigation of heat transfer and thermo-hydraulic performance of solar air heater with different ribs and their machine learning-based prediction. J Braz. Soc. Mech. Sci. Eng. 46, 73 (2024). https://doi.org/10.1007/s40430-023-04663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04663-3

Keywords

Navigation