Log in

Numerical analysis of laminar burning velocity of hydrogen and carbon monoxide-enriched natural gas (HyCONG) blends

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The laminar burning velocities of various HyCONG blends, consisting of hydrogen, carbon monoxide, and natural gas, were measured experimentally and numerically using the outwardly spherical expanding flame technique. Fifteen different combinations of H2, CH4, and CO were analyzed, with five CO blends (0%, 20%, 40%, 60%, and 80%) and three HCNG blends (0%, 20%, and 40%) by volume selected. To evaluate the uncertainty associated with extrapolation models, three models LS (linear model based on stretch rate), NQ (quasi-study nonlinear model), and N3P (nonlinear model with 3 fitting parameters) were used. Four chemical kinetic mechanisms (Aramco 2.0, San-Diego, GRI-Mech 3.0, and USC-Mech 2.0) were used for numerical analysis. The laminar burning velocity increased with increasing CO fraction for a constant H2, CNG (CH4) ratio, and equivalence ratio. The GRI-Mech 3.0 mechanism closely matched the LS-measured values, but the NQ and N3P models also predicted LBV well for some specific blends and equivalence ratios. CO enrichment in the fuel had a significant effect on the laminar burning velocity of the blend and adiabatic temperature, while the H2 fraction also played a noticeable role in the chemical kinetic study. The laminar burning velocity of the HyCONG blends increased with increasing equivalence ratio, which could be explained by the decreasing unburned blend density and increasing H and O radical concentration. The chemical reaction of CO and OH radical had the highest flowrate sensitivity at a high CO fraction HyCONG blend. Individual heat release rate analysis was performed for each type of chemical kinetic mechanism. The highest HRR is found as 14.7*108, 13.7*108, and 18.57*108 J/m3-s, respectively, for 0–80, 20–80, and 40–60 HyCONG at ϕ = 1.0. It is observed that the highest HRR is given by reaction s-R49 and a-R92 which is a similar kind of reaction and not participating in GRI-Mech 3.0 and USC-Mech 2.0. It was found that the best extrapolation model and kinetic mechanism are LS and GRI-Mech 3.0, but there is a possibility to reduce the mechanism for more accurate predictions.

Highlights

  1. 1.

    LBV calculation using three different extrapolation models.

  2. 2.

    Comparison of LBV using four different chemical kinetic mechanisms.

  3. 3.

    The highest heat release rate was given by s-R49 and a-R92 which is a similar reaction.

  4. 4.

    Flowrate sensitivity coefficient calculation for 45 different kinds of HyCONG blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lavoie GA, Heywood JB, Keck JC (1970) Experimental and theoretical study of nitric oxide formation in internal combustion engines. Combust Sci Technol 1(4):313–326. https://doi.org/10.1080/00102206908952211

    Article  Google Scholar 

  2. Pulkrabek WW (2004) Engineering fundamentals of the internal combustion engine

  3. Britannica E History of the study of combustion; Available from: https://www.britannica.com/science/combustion/History-of-the-study-of-combustion

  4. Heywood JB (1988) Fundamentals of internal combustion engines. Tata McGraw Hills, New York

    Google Scholar 

  5. Campbell CJ, Laherrère JH (1998) The end of cheap oil. Sci Am 278(3):78–83

    Article  Google Scholar 

  6. Johnson DR, Heltzel R, Nix AC, Clark N, Darzi M (2017) Greenhouse gas emissions and fuel efficiency of in-use high horsepower diesel, dual fuel, and natural gas engines for unconventional well development. Appl Energy 206:739–750. https://doi.org/10.1016/j.apenergy.2017.08.234

    Article  Google Scholar 

  7. Feijoo F, Iyer GC, Avraam C, Siddiqui SA, Clarke LE, Sankaranarayanan S et al (2018) The future of natural gas infrastructure development in the United states. Appl Energy 228:149–166. https://doi.org/10.1016/j.apenergy.2018.06.037

    Article  Google Scholar 

  8. Wei L, Geng P (2016) A review on natural gas/diesel dual fuel combustion, emissions and performance. Fuel Process Technol 142:264–278. https://doi.org/10.1016/j.fuproc.2015.09.018

    Article  Google Scholar 

  9. Ma F, Wang Y, Liu H, Li Y, Wang J, Zhao S (2007) Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine. Int J Hydrog Energy 32(18):5067–5075. https://doi.org/10.1016/j.ijhydene.2007.07.048

    Article  Google Scholar 

  10. Konnov AA, Mohammad A, Kishore VR, Kim NI, Prathap C, Kumar S (2018) A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+ air mixtures. Prog Energy Combust Sci 68:197–267. https://doi.org/10.1016/j.pecs.2018.05.003

    Article  Google Scholar 

  11. Gürbüz H, Köse Ş (2021) A theoretical investigation on the performance and combustion parameters in an spark ignition engine fueled with different shale gas mixtures. J Eng Gas Turbines Power 10(1115/1):4048641

    Google Scholar 

  12. Gu XJ, Haq MZ, Lawes M, Woolley R (2000) Laminar burning velocity and Markstein lengths of methane–air mixtures. Combust Flame 121(1–2):41–58. https://doi.org/10.1016/S0010-2180(99)00142-X

    Article  Google Scholar 

  13. Liao S, Jiang D, Cheng Q (2004) Determination of laminar burning velocities for natural gas. Fuel 83(9):1247–1250. https://doi.org/10.1016/j.fuel.2003.12.001

    Article  Google Scholar 

  14. Khan AR, Anbusaravanan S, Kalathi L, Velamati R, Prathap C (2017) Investigation of dilution effect with N2/CO2 on laminar burning velocity of premixed methane/oxygen mixtures using freely expanding spherical flames. Fuel 196:225–232. https://doi.org/10.1016/j.fuel.2017.01.086

    Article  Google Scholar 

  15. Elia M, Ulinski M, Metghalchi M (2001) Laminar burning velocity of methane–air–diluent mixtures. J Eng Gas Turbines Power 123(1):190–196. https://doi.org/10.1115/1.1339984

    Article  Google Scholar 

  16. Zahedi P, Yousefi K (2014) Effects of pressure and carbon dioxide, hydrogen and nitrogen concentration on laminar burning velocities and NO formation of methane-air mixtures. J Mech Sci Technol 28(1):377–386. https://doi.org/10.1007/s12206-013-0970-5

    Article  Google Scholar 

  17. Wang Z, Yang L, Li B, Li Z, Sun Z, Aldén M et al (2012) Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations. Combust Flame 159(1):120–129. https://doi.org/10.1016/j.combustflame.2011.06.017

    Article  Google Scholar 

  18. Ilbas M, Crayford AP, Yilmaz I, Bowen PJ, Syred N (2006) Laminar-burning velocities of hydrogen-air and hydrogen-methane-air mixtures: an experimental study. Int J Hydrog Energy 31(12):1768–1779. https://doi.org/10.1016/j.ijhydene.2005.12.007

    Article  Google Scholar 

  19. Huang Z, Zhang Y, Zeng K, Liu B, Wang Q, Jiang D (2006) Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust Flame 146(1–2):302–311. https://doi.org/10.1016/j.combustflame.2006.03.003

    Article  Google Scholar 

  20. Ma F, Wang Y, Wang M, Liu H, Wang J, Ding S et al (2008) Development and validation of a quasi-dimensional combustion model for SI engines fuelled by HCNG with variable hydrogen fractions. Int J Hydrog Energy 33(18):4863–4875. https://doi.org/10.1016/j.ijhydene.2008.06.068

    Article  Google Scholar 

  21. Perini F, Paltrinieri F, Mattarelli E (2010) A quasi-dimensional combustion model for performance and emissions of SI engines running on hydrogen–methane blends. Int J Hydrog Energy 35(10):4687–4701. https://doi.org/10.1016/j.ijhydene.2010.02.083

    Article  Google Scholar 

  22. Ji C, Yang J, Liu X, Zhang B, Wang S, Gao B (2016) A quasi-dimensional model for combustion performance prediction of an SI hydrogen-enriched methanol engine. Int J Hydrog Energy 41(39):17676–17686. https://doi.org/10.1016/j.ijhydene.2016.07.146

    Article  Google Scholar 

  23. Rao A, Mehra RK, Duan H, Ma F (2017) Comparative study of the NOx prediction model of HCNG engine. Int J Hydrog Energy 42(34):22066–22081. https://doi.org/10.1016/j.ijhydene.2017.07.107

    Article  Google Scholar 

  24. Mehra RK, Ma F, Hao D, Juknelevičius R (2018) Study of turbulent entrainment quasi-dimensional combustion model for HCNG engines with variable ignition timings 2018–01-1687. SAE Tech Paper. https://doi.org/10.4271/2018-01-1687

    Article  Google Scholar 

  25. Ji M, Miao H, Jiao Q, Huang Q, Huang Z (2009) Flame propagation speed of CO2 diluted hydrogen-enriched natural gas and air mixtures. Energy Fuels 23(10):4957–4965. https://doi.org/10.1021/ef900458r

    Article  Google Scholar 

  26. Miao H, Ji M, Jiao Q, Huang Q, Huang Z (2009) Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal reduced and elevated pressures. Int J Hydrog Energy 34(7):3145–3155. https://doi.org/10.1016/j.ijhydene.2009.01.059

    Article  Google Scholar 

  27. Miao H, Jiao Q, Huang Z, Jiang D (2009) Measurement of laminar burning velocities and Markstein lengths of diluted hydrogen-enriched natural gas. Int J Hydrog Energy 34(1):507–518. https://doi.org/10.1016/j.ijhydene.2008.10.050

    Article  Google Scholar 

  28. Tahtouh T, Halter F, Samson E, Mounaïm-Rousselle C (2009) Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane–air flames. Int J Hydrog Energy 34(19):8329–8338. https://doi.org/10.1016/j.ijhydene.2009.07.071

    Article  Google Scholar 

  29. Chen Z, Dai P, Chen S (2012) A model for the laminar flame speed of binary fuel blends and its application to methane/hydrogen mixtures. Int J Hydrog Energy 37(13):10390–10396. https://doi.org/10.1016/j.ijhydene.2012.04.015

    Article  Google Scholar 

  30. Nilsson EJ, van Sprang A, Larfeldt J, Konnov AA (2017) The comparative and combined effects of hydrogen addition on the laminar burning velocities of methane and its blends with ethane and propane. Fuel 189:369–376. https://doi.org/10.1016/j.fuel.2016.10.103

    Article  Google Scholar 

  31. Bradley D, Lawes M, Liu K, Verhelst S, Woolley R (2007) Laminar burning velocities of lean hydrogen–air mixtures at pressures up to 1.0 MPa. Combust Flame 149(1–2):162–172. https://doi.org/10.1016/j.combustflame.2006.12.002

    Article  Google Scholar 

  32. Milton B, Keck J (1984) Laminar burning velocities in stoichiometric hydrogen and hydrogen hydrocarbon gas mixtures. Combust Flame 58(1):13–22. https://doi.org/10.1016/0010-2180(84)90074-9

    Article  Google Scholar 

  33. Pareja J, Burbano HJ, Ogami Y (2010) Measurements of the laminar burning velocity of hydrogen–air premixed flames. Int J Hydrog Energy 35(4):1812–1818. https://doi.org/10.1016/j.ijhydene.2009.12.031

    Article  Google Scholar 

  34. Liu D, MacFarlane R (1983) Laminar burning velocities of hydrogen-air and hydrogen-air steam flames. Combust Flame 49(1–3):59–71. https://doi.org/10.1016/0010-2180(83)90151-7

    Article  Google Scholar 

  35. Wang Z, Weng W, He Y, Li Z, Cen K (2015) Effect of H2/CO ratio and N2/CO2 dilution rate on laminar burning velocity of syngas investigated by direct measurement and simulation. Fuel 141:285–292. https://doi.org/10.1016/j.fuel.2014.10.040

    Article  Google Scholar 

  36. Goswami M, Bastiaans R, Konnov AA, De Goey L (2014) Laminar burning velocity of lean H2–CO mixtures at elevated pressure using the heat flux method. Int J Hydrog Energy 39(3):1485–1498

    Article  Google Scholar 

  37. Zhang Y, Yang Y, Miao Z, Zhang H, Wu Y, Liu Q (2014) A mixing model for laminar flame speed calculation of lean H2/CO/air mixtures based on asymptotic analyses. Fuel 134:400–405. https://doi.org/10.1016/j.fuel.2014.06.001

    Article  Google Scholar 

  38. Askari O, Moghaddas A, Alholm A, Vien K, Alhazmi B, Metghalchi H (2016) Laminar burning speed measurement and flame instability study of H2/CO/air mixtures at high temperatures and pressures using a novel multi-shell model. Combust Flame 168:20–31. https://doi.org/10.1016/j.combustflame.2016.03.018

    Article  Google Scholar 

  39. Davis SG, Joshi AV, Wang H, Egolfopoulos F (2005) An optimized kinetic model of H2/CO combustion. Proc Combust Inst 30(1):1283–1292. https://doi.org/10.1016/j.proci.2004.08.252

    Article  Google Scholar 

  40. Burbano HJ, Pareja J, Amell AA (2011) Laminar burning velocities and flame stability analysis of H2/CO/air mixtures with dilution of N2 and CO2. Int J Hydrog Energy 36(4):3232–3242. https://doi.org/10.1016/j.ijhydene.2010.11.089

    Article  Google Scholar 

  41. Bouvet N, Chauveau C, Gökalp I, Halter F (2011) Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures. Proc Combust Inst 33(1):913–920. https://doi.org/10.1016/j.proci.2010.05.088

    Article  Google Scholar 

  42. Natarajan J, Nandula S, Lieuwen T, Seitzman J (2005) Laminar flame speeds of synthetic gas fuel mixtures. Turbo Expo: Power Land, Sea Air 4725:677–686

    Google Scholar 

  43. Mclean IC, Smith DB, Taylor SC (1994) The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction. Symp Combust 25(1):749–757. https://doi.org/10.1016/S0082-0784(06)80707-1

    Article  Google Scholar 

  44. Prathap C, Ray A, Ravi M (2012) Effects of dilution with carbon dioxide on the laminar burning velocity and flame stability of H2–CO mixtures at atmospheric condition. Combust Flame 159(2):482–492. https://doi.org/10.1016/j.combustflame.2011.08.006

    Article  Google Scholar 

  45. Natarajan J, Kochar Y, Lieuwen T, Seitzman J (2009) Pressure and preheat dependence of laminar flame speeds of H2/CO/CO2/O2/He mixtures. Proc Combust Inst 32(1):1261–1268. https://doi.org/10.1016/j.proci.2008.06.110

    Article  Google Scholar 

  46. Li J, Zhao Z, Kazakov A, Chaos M, Dryer FL, Scire JJ Jr (2007) A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int J Chem Kinet 39(3):109–136. https://doi.org/10.1002/kin.20218

    Article  Google Scholar 

  47. Prathap C, Ray A, Ravi MR (2008) Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition. Combust Flame 155(1–2):145–160. https://doi.org/10.1016/j.combustflame.2008.04.005

    Article  Google Scholar 

  48. Hu E, Fu J, Pan L, Jiang X, Huang Z, Zhang Y (2012) Experimental and numerical study on the effect of composition on laminar burning velocities of H2/CO/N2/CO2/air mixture. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2012.09.053

    Article  Google Scholar 

  49. Liang X, Wang Z, Weng W, Zhou Z, Huang Z, Zhou J et al (2013) Study of ozone-enhanced combustion in H2/CO/N2/air premixed flames by laminar burning velocity measurements and kinetic modeling. Int J Hydrog Energy 38(2):1177–1188. https://doi.org/10.1016/j.ijhydene.2012.10.075

    Article  Google Scholar 

  50. Kishore VR, Ravi MR, Ray A (2011) Adiabatic burning velocity and cellular flame characteristics of H2–CO–CO2–air mixtures. Combust Flame 158(11):2149–2164. https://doi.org/10.1016/j.combustflame.2011.03.018

    Article  Google Scholar 

  51. Yetter RA, Dryer F (1992) Inhibition of moist carbon monoxide oxidation by trace amounts of hydrocarbons symposium (international) on combustion. Elsevier, USA

    Google Scholar 

  52. Vagelopoulos CM, Egolfopoulos FN (1994) Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. Symp Combust 25(1):1317–1323. https://doi.org/10.1016/S0082-0784(06)80773-3

    Article  Google Scholar 

  53. Wu C-Y, Chao Y-C, Cheng T, Chen C-P, Ho C-T (2009) Effects of CO addition on the characteristics of laminar premixed CH4/air opposed-jet flames. Combust Flame 156(2):362–373. https://doi.org/10.1016/j.combustflame.2008.10.028

    Article  Google Scholar 

  54. Zhang B, Dong C, Zhou Q, Chen X, Culligan P, Zhao Q et al (2015) Experimental study on laminar flame speed of natural gas/carbon monoxide/air mixtures. Energy Sour Part A: Recov Utilization Environ Eff 37(6):576–582. https://doi.org/10.1080/15567036.2011.588681

    Article  Google Scholar 

  55. Cheng T, Chang Y-C, Chao Y-C, Chen G-B, Li Y-H, Wu C-Y (2011) An experimental and numerical study on characteristics of laminar premixed H2/CO/CH4/air flames. Int J Hydrog Energy 36(20):13207–13217. https://doi.org/10.1016/j.ijhydene.2011.07.077

    Article  Google Scholar 

  56. Varghese RJ, Kolekar H, Kumar S (2019) Laminar burning velocities of H2/CO/CH4/CO2/N2-air mixtures at elevated temperatures. Int J Hydrog Energy 44(23):12188–12199. https://doi.org/10.1016/j.ijhydene.2019.03.103

    Article  Google Scholar 

  57. Zhou Q, Cheung C, Leung C, Li X, Li X, Huang Z (2019) Effects of fuel composition and initial pressure on laminar flame speed of H2/CO/CH4 bio-syngas. Fuel 238:149–158. https://doi.org/10.1016/j.fuel.2018.10.106

    Article  Google Scholar 

  58. Xu H, Liu F, Sun S, Meng S, Zhao Y (2019) A systematic numerical study of the laminar burning velocity of iso-octane/syngas/air mixtures. Chem Eng Sci 195:598–608. https://doi.org/10.1016/j.ces.2018.10.002

    Article  Google Scholar 

  59. Chen Z (2015) On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: methane/air at normal temperature and pressure. Combust Flame 162(6):2442–2453. https://doi.org/10.1016/j.combustflame.2015.02.012

    Article  Google Scholar 

  60. Egolfopoulos FN, Hansen N, Ju Y, Kohse-Höinghaus K, Law CK, Qi F (2014) Advances and challenges in laminar flame experiments and implications for combustion chemistry. Prog Energy Combust Sci 43:36–67. https://doi.org/10.1016/j.pecs.2014.04.004

    Article  Google Scholar 

  61. Santner J, Haas FM, Dryer FL, Ju Y (2015) High temperature oxidation of formaldehyde and formyl radical: a study of 1,3,5-trioxane laminar burning velocities. Proc Combust Inst 35(1):687–694. https://doi.org/10.1016/j.proci.2014.05.014

    Article  Google Scholar 

  62. Li X, You X, Wu F, Law CK (2015) Uncertainty analysis of the kinetic model prediction for high-pressure H2/CO combustion. Proc Combust Inst 35(1):617–624. https://doi.org/10.1016/j.proci.2014.07.047

    Article  Google Scholar 

  63. Kim HH, Won SH, Santner J, Chen Z, Ju Y (2013) Measurements of the critical initiation radius and unsteady propagation of n-decane/air premixed flames. Proc Combust Inst 34(1):929–936. https://doi.org/10.1016/j.proci.2012.07.035

    Article  Google Scholar 

  64. Bradley D, Gaskell PH, Gu XJ (1996) Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames: a computational study. Combust Flame 104(1–2):176–198. https://doi.org/10.1016/0010-2180(95)00115-8

    Article  Google Scholar 

  65. Zheng C, Burke MP, Ju Y (2009) Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proc Combust Inst 32(1):1253–1260. https://doi.org/10.1016/j.proci.2008.05.060

    Article  Google Scholar 

  66. Chen Z (2010) Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit. Combust Flame 157(12):2267–2276. https://doi.org/10.1016/j.combustflame.2010.07.010

    Article  Google Scholar 

  67. Hao Y, Wang H, Santner J, Gou X, Sohn CH, Ju Y et al (2014) Radiation-induced uncertainty in laminar flame speed measured from propagating spherical flames. Combust Flame 161(11):2815–2824. https://doi.org/10.1016/j.combustflame.2014.05.012

    Article  Google Scholar 

  68. Jayachandran J, Lefebvre A, Zhao R, Halter F, Varea E, Renou B et al (2015) A study of propagation of spherically expanding and counterflow laminar flames using direct measurements and numerical simulations. Proc Combust Inst. https://doi.org/10.1016/j.proci.2014.05.031

    Article  Google Scholar 

  69. Mehra RK, Duan H, Luo S, Ma F (2019) Laminar burning velocity of hydrogen and carbon-monoxide enriched natural gas (HyCONG): an experimental and artificial neural network study. Fuel 246:476–490. https://doi.org/10.1016/j.fuel.2019.03.003

    Article  Google Scholar 

  70. Wu F, Liang W, Chen Z, Ju Y, Law CK (2015) Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames. Proc Combust Inst 35(1):663–670. https://doi.org/10.1016/j.proci.2014.05.065

    Article  Google Scholar 

  71. Bradley D, Hicks R, Lawes M, Sheppard C, Woolley R (1998) The measurement of laminar burning velocities and Markstein numbers for iso-octane–air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb. Combust Flame 115(1–2):126–144. https://doi.org/10.1016/S0010-2180(97)00349-0

    Article  Google Scholar 

  72. Burke MP, Chen Z, Ju Y, Dryer FL (2009) Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust Flame 156(4):771–779. https://doi.org/10.1016/j.combustflame.2009.01.013

    Article  Google Scholar 

  73. Wu C, Law CK (1985) On the determination of laminar flame speeds from stretched flames symposium (international) on combustion 20: 1941–9: Elsevier

  74. Kelley AP, Law CK (2009) Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combust Flame 156(9):1844–1851. https://doi.org/10.1016/j.combustflame.2009.04.004

    Article  Google Scholar 

  75. Ronney PD, Sivashinsky GI (1989) A theoretical study of propagation and extinction of nonsteady spherical flame fronts. SIAM J Appl Math 49(4):1029–1046. https://doi.org/10.1137/0149062

    Article  MathSciNet  MATH  Google Scholar 

  76. Halter F, Tahtouh T, Mounaïm-Rousselle C (2010) Nonlinear effects of stretch on the flame front propagation. Combust Flame 157(10):1825–1832. https://doi.org/10.1016/j.combustflame.2010.05.013

    Article  Google Scholar 

  77. Singh D, Nishiie T, Tanvir S, Qiao L (2012) An experimental and kinetic study of syngas/air combustion at elevated temperatures and the effect of water addition. Fuel 94:448–456. https://doi.org/10.1016/j.fuel.2011.11.058

    Article  Google Scholar 

  78. **e Y, Wang J, Xu N, Yu S, Huang Z (2014) Comparative study on the effect of CO2 and H2O dilution on laminar burning characteristics of CO/H2/air mixtures. International J Hydrog Energy 39(7):3450–3458. https://doi.org/10.1016/j.ijhydene.2013.12.037

    Article  Google Scholar 

Download references

Acknowledgements

The author wants to acknowledge and express his gratitude toward Weichai Power Company Limited for allowing him to involve in HyCONG’s laminar burning velocity measurement research with Dr. Fanhua Ma from Tsinghua University. Authors also want to express gratitude toward Dr. Hao Duan for his valuable advice during the experimental data analysis. Furthermore, special thanks to Mr. Qiu Zhengtao for his ultimate support in experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roopesh Kumar Mehra.

Additional information

Technical Editor: Mario Eduardo Santos Martins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2517 KB)

Appendix

Appendix

  1. (1)

    Reactions of GRI-Mech 3.0 with symbols participated in the combustion of HyCONG blends.

    S. No

    Symbol

    Reactions

    1

    g-R3

    O + H2 <  =  > H + OH

    2

    g-R11

    O + CH4 <  =  > OH + CH3

    3

    g-R33

    H + O2 + M <  =  > HO2 + M

    4

    g-R35

    H + O2 + H2O <  =  > HO2 + H2O

    5

    g-R36

    H + O2 + N2 <  =  > HO2 + N2

    6

    g-R38

    H + O2 <  =  > O + OH

    7

    g-R43

    H + OH + M <  =  > H2O + M

    8

    g-R45

    H + HO2 <  =  > O2 + H2

    9

    g-R46

    H + HO2 <  =  > 2OH

    10

    g-R52

    H + CH3(+ M) <  =  > CH4(+ M)

    11

    g-R55

    H + HCO <  =  > H2 + CO

    12

    g-R97

    OH + CH3 <  =  > CH2(S) + H2O

    13

    g-R99

    OH + CO <  =  > H + CO2

    14

    g-R119

    HO2 + CH3 <  =  > OH + CH3O

    15

    g-R166

    HCO + H2O <  =  > H + CO + H2O

    16

    g-R167

    HCO + M <  =  > H + CO + M

    17

    g-R284

    O + CH3 =  > H + H2 + CO

    1. (2)

      Reactions of Aramco 2.0 with symbols participated in the combustion of HyCONG blends.

      S. No

      Symbol

      Reactions

      1

      a-R2

      H2 + O <  =  > H + OH

      2

      a-R3

      H2 + OH <  =  > H + H2O

      3

      a-R5

      O2 + H <  =  > O + OH

      4

      a-R6

      H + OH + M <  =  > H2O + M

      5

      a-R27

      HO2 + H <  =  > OH + OH

      6

      a-R28

      HO2 + H <  =  > H2 + O2

      7

      a-R34

      H + O2(+ M) <  =  > HO2(+ M)

      8

      a-R36

      CO + OH <  =  > CO2 + H

      9

      a-R37

      CO + OH <  =  > CO2 + H (duplicate)

      10

      a-R43

      CH3 + H(+ M) <  =  > CH4(+ M)

      11

      a-R44

      CH4 + H <  =  > CH3 + H2

      12

      a-R46

      CH4 + OH <  =  > CH3 + H2O

      13

      a-R92

      CH3 + O <  =  > CH2O + H

      14

      a-R95

      CH3 + OH <  =  > CH2OH + H

      15

      a-R163

      HCO + M <  =  > H + CO + M

      16

      a-R164

      HCO + O2 <  =  > CO + HO2

      17

      a-R166

      HCO + H <  =  > CO + H2

  1. (3)

    Reactions of Aramco 2.0 with symbols participated in the combustion of HyCONG blends.

    S. No

    Symbol

    Reactions

    1

    s-R1

    H + O2 <  =  > OH + O

    2

    s-R2

    H2 + O <  =  > OH + H

    3

    s-R3

    H2 + OH <  =  > H2O + H

    4

    s-R6

    H + OH + M <  =  > H2O + M

    5

    s-R9

    H + O2(+ M) <  =  > HO2(+ M)

    6

    s-R10

    HO2 + H <  =  > 2OH

    7

    s-R25

    CO + OH <  =  > CO2 + H

    8

    s-R28

    HCO + M <  =  > CO + H + M

    9

    s-R41

    CH4 + H <  =  > H2 + CH3

    10

    s-R42

    CH4 + OH <  =  > H2O + CH3

    11

    s-R48

    CH3 + OH <  =  > S-CH2 + H2O

    12

    s-R49

    CH3 + O <  =  > CH2O + H

    13

    s-R56

    H + CH3(+ M) <  =  > CH4(+ M)

    14

    s-R68

    T-CH2 + O2 <  =  > CO + OH + H

  2. (4)

    Reactions of USC-Mech 2.0 with symbols participated in the combustion of HyCONG blends.

    S. No

    Symbol

    Reactions

    1

    u-R1

    H + O2 <  =  > O + OH

    2

    u-R2

    O + H2 <  =  > H + OH

    3

    u-R9

    H + OH + M <  =  > H2O + M

    4

    u-R10

    O + H + M <  =  > OH + M

    5

    u-R12

    H + O2(+ M) <  =  > HO2(+ M)

    6

    u-R16

    HO2 + H <  =  > OH + OH

    7

    u-R31

    CO + OH <  =  > CO2 + H

    8

    u-R32

    CO + OH <  =  > CO2 + H (duplicate)

    9

    u-R35

    HCO + H <  =  > CO + H2

    10

    u-R39

    HCO + M <  =  > CO + H + M

    11

    u-R40

    HCO + H2O <  =  > CO + H + H2O

    12

    u-R88

    CH3 + H(+ M) <  =  > CH4(+ M)

    13

    u-R92

    CH3 + OH <  =  > CH2* + H2O

    14

    u-R123

    CH4 + H <  =  > CH3 + H2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehra, R.K., Jia, D., Sun, N. et al. Numerical analysis of laminar burning velocity of hydrogen and carbon monoxide-enriched natural gas (HyCONG) blends. J Braz. Soc. Mech. Sci. Eng. 45, 342 (2023). https://doi.org/10.1007/s40430-023-04257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04257-z

Keywords

Navigation