Log in

Study on dynamic stability of magneto-electro-thermo-elastic cylindrical nanoshells resting on Winkler–Pasternak elastic foundations using nonlocal strain gradient theory

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper investigated the dynamic stability of magneto-electro-thermo-elastic (METE) cylindrical nanoshells resting on the Winkler–Pasternak elastic foundations in the framework of the nonlocal strain gradient theory and the first-order shear deformation shell theory. Hamilton’s principle is employed to drive the governing differential equations and related boundary conditions. The governing differential equations convert into the form of the Mathieu–Hill equations with the aid of the Navier solution procedure, and then, the boundaries of unstable regions are determined via Bolotin’s method. Results show that the static load factor, electric potential, magnetic potential, temperature change, elastic foundation stiffness have important effects on the dynamic stability of METE nanoshells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shooshtari A, Razavi S (2015) Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation. Compos Part B: Eng 78:95–108

    Google Scholar 

  2. Nan CW (1994) Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys Rev B 50:6082

    Google Scholar 

  3. Ma L, Ke L, Reddy J et al (2018) Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory. Compos Struct 199:10–23

    Google Scholar 

  4. Wang Y, Hu J, Lin Y et al (2010) Multiferroic magnetoelectric composite nanostructures. Npg Asia Mater 2:61–68

    Google Scholar 

  5. Nan CW, Liu G, Lin Y et al (2005) Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys Rev Lett 94:197203

    Google Scholar 

  6. Li J, Levin I, Slutsker J et al (2005) Self-assembled multiferroic nanostructures in the Co Fe 2 O 4-Pb Ti O 3 system. Appl Phys Lett 87:072909

    Google Scholar 

  7. Johnson SH, Finkel P, Leaffer OD et al (2011) Magneto-elastic tuning of ferroelectricity within a magnetoelectric nanowire. Appl Phys Lett 99:182901

    Google Scholar 

  8. Lotey GS, Verma N (2013) Magnetoelectric coupling in multiferroic BiFeO3 nanowires. Chem Phys Lett 579:78–84

    Google Scholar 

  9. Shetty S, Palkar V, Pinto R (2002) Size effect study in magnetoelectric BiFeO 3 system. Pramana 58:1027–1030

    Google Scholar 

  10. Park TJ, Papaefthymiou GC, Viescas AJ et al (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7:766–772

    Google Scholar 

  11. Jaiswal A, Das R, Vivekanand K et al (2010) Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J Phys Chem C 114:2108–2115

    Google Scholar 

  12. Ren W, Bellaiche L (2010) Size effects in multiferroic BiFeO 3 nanodots: a first-principles-based study. Phys Rev B 82:113403

    Google Scholar 

  13. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16

    MathSciNet  MATH  Google Scholar 

  14. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Google Scholar 

  15. Jena SK, Chakraverty S, Mahesh V et al (2022) A novel numerical approach for the stability of nanobeam exposed to hygro-thermo-magnetic environment embedded in elastic foundation. ZAMM-J Appl Math Mech 102:e202100380

    MathSciNet  Google Scholar 

  16. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech An 16:51–78

    MathSciNet  MATH  Google Scholar 

  17. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Google Scholar 

  18. Mindlin RD, Eshel N (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4:109–124

    MATH  Google Scholar 

  19. Lim C, Zhang G, Reddy J (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    MathSciNet  MATH  Google Scholar 

  20. Thai CH, Ferreira A, Nguyen-Xuan H et al (2021) A size dependent meshfree model for functionally graded plates based on the nonlocal strain gradient theory. Compos Struct 272:114169

    Google Scholar 

  21. Karami B, Janghorban M, Rabczuk T (2020) Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Compos Part B: Eng 182:107622

    Google Scholar 

  22. Thang PT, Tran P, Nguyen-Thoi T (2021) Applying nonlocal strain gradient theory to size-dependent analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Appl Math Model 93:775–791

    MathSciNet  MATH  Google Scholar 

  23. Forsat M, Badnava S, Mirjavadi SS et al (2020) Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory. Eur Phys J Plus 135:1–19

    Google Scholar 

  24. Roodgar Saffari P, Fakhraie M, Roudbari MA (2020) Free vibration problem of fluid-conveying double-walled boron nitride nanotubes via nonlocal strain gradient theory in thermal environment. Mech Based Des Struc 1:1–18

    Google Scholar 

  25. Monaco GT, Fantuzzi N, Fabbrocino F et al (2021) Hygro-thermal vibrations and buckling of laminated nanoplates via nonlocal strain gradient theory. Compos Struct 262:113337

    Google Scholar 

  26. Jena SK, Chakraverty S, Mahesh V et al (2022) Wavelet-based techniques for Hygro-Magneto-Thermo vibration of nonlocal strain gradient nanobeam resting on Winkler-Pasternak elastic foundation. Eng Anal Boundary Elem 140:494–506

    MathSciNet  MATH  Google Scholar 

  27. Jena SK, Chakraverty S, Malikan M (2020) Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field. J Comput Des Eng 7:685–699

    Google Scholar 

  28. Jena SK, Chakraverty S, Malikan M et al (2020) Hygro-magnetic vibration of the single-walled carbon nanotube with nonlinear temperature distribution based on a modified beam theory and nonlocal strain gradient model. Int J Appl Mech 12:2050054

    Google Scholar 

  29. Asrari R, Ebrahimi F, Kheirikhah MM et al (2020) Buckling analysis of heterogeneous magneto-electro-thermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory. Mech Based Des Struct 1:1–24

    Google Scholar 

  30. Asrari R, Ebrahimi F, Kheirikhah MM (2020) On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells. Adv Nano Res 9:33–45

    Google Scholar 

  31. Ebrahimi F, Dehghan M, Seyfi A (2019) Eringen’s nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes. Adv Nano Res 7:1

    Google Scholar 

  32. Liu H, Lv Z (2019) Vibration performance evaluation of smart magneto-electro-elastic nanobeam with consideration of nanomaterial uncertainties. J Intel Mat Syst Struct 30:2932–2952

    Google Scholar 

  33. Arefi M, Kiani M, Zamani M (2020) Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation. J Sandw Struct Mater 22:2157–2185

    Google Scholar 

  34. Mirjavadi SS, Forsat M, Badnava S et al (2020) Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents. Appl Phys A 126:1–16

    Google Scholar 

  35. Sahmani S, Khandan A (2019) Size dependency in nonlinear instability of smart magneto-electro-elastic cylindrical composite nanopanels based upon nonlocal strain gradient elasticity. Microsyst Technol 25:2171–2186

    Google Scholar 

  36. Asrari R, Ebrahimi F, Kheirikhah MM (2020) On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells. Struct Eng Mech 75:659–674

    Google Scholar 

  37. Farajpour M, Shahidi A, Hadi A et al (2019) Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms. Mech Adv Mater Struct 26:1469–1481

    Google Scholar 

  38. Dehghan M, Ebrahimi F, Vinyas M (2019) Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes. Eng Comput-Germany 1:1–17

    Google Scholar 

  39. Mirjavadi SS, Bayani H, Khoshtinat N et al (2020) On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells. Smart Struct Syst 26:631–640

    Google Scholar 

  40. Habibi B, Beni YT, Mehralian F (2019) Free vibration of magneto-electro-elastic nanobeams based on modified couple stress theory in thermal environment. Mech Adv Mater Struct 26:601–613

    Google Scholar 

  41. Hu Q, Yang W, Zhang S (2022) Studies on band structure of magneto-elastic phononic crystal nanoplates using the nonlocal theory. Phys Lett A 423:127820

    MATH  Google Scholar 

  42. **ao WS, Gao Y, Zhu HP (2019) Buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams. Microsyst Technol 25:2451–2470

    Google Scholar 

  43. Żur KK, Arefi M, Kim J et al (2020) Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compos Part B: Eng 182:107601

    Google Scholar 

  44. Ke LL, Wang YS (2014) Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory. Phys E 63:52–61

    Google Scholar 

  45. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

    Google Scholar 

  46. Wang J, Wang YQ, Chai Q (2022) Free vibration analysis of a spinning functionally graded spherical–cylindrical–conical shell with general boundary conditions in a thermal environment. Thin-Wall Struct 180:109768

    Google Scholar 

  47. Ke LL, Wang YS, Yang J et al (2014) The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells. Smart Mater Struct 23:125036

    Google Scholar 

  48. Christoforou A, Swanson S (1990) Analysis of simply-supported orthotropic cylindrical shells subject to lateral impact loads. J Appl Mech 57:376–382

    Google Scholar 

  49. Wang Q (2002) On buckling of column structures with a pair of piezoelectric layers. Eng Struct 24:199–205

    Google Scholar 

  50. Wang YQ, Ye C, Zu JW (2019) Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp Sci Technol 85:359–370

    Google Scholar 

  51. Chai QD, Wang YQ (2021) A general approach for free vibration analysis of spinning joined conical–cylindrical shells with arbitrary boundary conditions. Thin Wall Struct 168:108243

    Google Scholar 

  52. Chai Q, Wang YQ (2022) Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion. Eng Struct 252:113718

    Google Scholar 

  53. Wang YQ, Li H, Zhang Y et al (2018) A nonlinear surface-stress-dependent model for vibration analysis of cylindrical nanoscale shells conveying fluid. Appl Math Model 64:55–70

    MathSciNet  MATH  Google Scholar 

  54. Ye C, Wang YQ (2021) Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances. Nonlinear Dyn 104:2051–2069

    Google Scholar 

  55. Kim YW (2015) Free vibration analysis of FGM cylindrical shell partially resting on Pasternak elastic foundation with an oblique edge. Compos Part B: Eng 70:263–276

    Google Scholar 

  56. Wang YQ (2018) Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta Astronaut 143:263–271

    Google Scholar 

  57. Wang Y, Wu H, Yang F et al (2021) An efficient method for vibration and stability analysis of rectangular plates axially moving in fluid. Appl Math Mech 42:291–308

    MathSciNet  MATH  Google Scholar 

  58. Wang YQ, Ye C, Zhu J (2020) Chebyshev collocation technique for vibration analysis of sandwich cylindrical shells with metal foam core. ZAMM-J Appl Math Mech 100:e201900199

    MathSciNet  Google Scholar 

  59. Teng MW, Wang YQ (2022) Spin-induced internal resonance in circular cylindrical shells. Int J Non-Linear Mech 147:104234

    Google Scholar 

  60. Chai Q, Wang Y, Teng M (2022) Nonlinear free vibration of spinning cylindrical shells with arbitrary boundary conditions. Appl Math Mech 43:1203–1218

    MathSciNet  MATH  Google Scholar 

  61. **ng WC, Wang YQ (2022) Vibration characteristics of thin plate system joined by hinges in double directions. Thin-Wall Struct 175:109260

    Google Scholar 

  62. Xu H, Wang YQ (2022) Differential transformation method for free vibration analysis of rotating Timoshenko beams with elastic boundary conditions. Int J Appl Mech 14:2250046

    Google Scholar 

  63. Wang Y, Ye C, Zu J (2018) Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities. Appl Math Mech 39:1587–1604

    MathSciNet  Google Scholar 

  64. **e W-C (2006) Dynamic stability of structures. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  65. Talimian A, Béda P (2018) Dynamic stability of a size-dependent micro-beam. Eur J Mech A/Solids 72:245–251

    MathSciNet  MATH  Google Scholar 

  66. Gholami R, Ansari R, Darvizeh A et al (2015) Axial buckling and dynamic stability of functionally graded microshells based on the modified couple stress theory. Int J Struct Stab Dyn 15:1450070

    MathSciNet  MATH  Google Scholar 

  67. Sahmani S, Ansari R, Gholami R et al (2013) Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory. Compos B 51:44–53

    Google Scholar 

  68. Darabi M, Ganesan R (2016) Non-linear dynamic instability analysis of laminated composite cylindrical shells subjected to periodic axial loads. Compos Struct 147:168–184

    Google Scholar 

  69. Al-shujairi M, Mollamahmutoğlu Ç (2018) Dynamic stability of sandwich functionally graded micro-beam based on the nonlocal strain gradient theory with thermal effect. Compos Struct 201:1018–1030

    Google Scholar 

  70. Bolotin V (1964) The dynamic stability of elastic systems. Holden-Day. Inc., San Fransisco

    MATH  Google Scholar 

  71. Kolahchi R, Hosseini H, Esmailpour M (2016) Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories. Compos Struct 157:1

    Google Scholar 

  72. Wu H, Yang J, Kitipornchai S (2017) Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos Struct 162:244–254

    Google Scholar 

  73. Patel S, Datta P, Sheikh AH (2006) Buckling and dynamic instability analysis of stiffened shell panels. Thin-Wall Struct 44:321–333

    Google Scholar 

  74. Ng T, Lam K, Liew K et al (2001) Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading. Int J Solids Struct 38:1295–1309

    MATH  Google Scholar 

  75. Ansari R, Sahmani S, Rouhi H (2011) Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Phys Lett A 375:1255–1263

    Google Scholar 

  76. Wang Q, Varadan V, Quek S (2006) Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Phys Lett A 357:130–135

    Google Scholar 

  77. Ke LL, Wang YS, Reddy J (2014) Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Compos Struct 116:626–636

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zhang.

Additional information

Technical Editor: Aurelio Araujo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$K_{11} = \left( {\frac{{ - A_{66} n^{2} }}{{L^{2} R^{4} }} - \frac{{A_{11} m^{2} \pi^{2} }}{{L^{4} R^{2} }}} \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(101)
$$K_{12} = \frac{mn\pi }{{L^{3} R^{3} }}\left( {A_{12} + A_{66} } \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(102)
$$K_{13} = \frac{{A_{12} m\pi }}{{L^{3} R^{3} }}\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(103)
$$K_{21} = K_{12} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} K_{13} = K_{31} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} K_{14} = K_{41} = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} K_{15} = K_{16} = K_{17} = 0,$$
(104)
$$K_{22} = \left[ {\frac{{A_{55} k_{S} L^{2} }}{{ - L^{4} R^{4} }}\left( {1 + A_{22} L^{2} n^{2} } \right) - \frac{{A_{66} m^{2} \pi^{2} }}{{L^{4} R^{2} }}} \right]\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(105)
$$K_{23} = - \frac{n}{{L^{2} R^{4} }}\left( {A_{22} + A_{55} k_{S} } \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}$$
(106)
$$K_{25} = \frac{1}{{L^{2} R^{3} }}A_{55} k_{S} \left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}$$
(107)
$$K_{24} = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} K_{32} = K_{23} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} K_{52} = K_{25} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} K_{51} = K_{15} ,$$
(108)
$$K_{26} = \frac{1}{{L^{2} R^{3} }}E_{24} n\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(109)
$$K_{27} = \frac{1}{{L^{2} R^{3} }}Q_{24} n\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(110)
$$\begin{aligned} K_{33} & = \frac{{N_{\theta 0} }}{{L^{4} R^{4} }}\left[ {\left( {e_{0} a} \right)^{2} \left( {L^{4} n^{4} + L^{2} m^{2} n^{2} \pi^{2} R^{2} } \right) + L^{4} n^{2} R^{2} } \right] \\ & \quad + \frac{{N_{x0} }}{{L^{4} R^{4} }}\left[ {\left( {e_{0} a} \right)^{2} \left( {L^{2} m^{2} n^{2} \pi^{2} R^{2} + m^{4} \pi^{4} R^{4} } \right) + L^{2} m^{2} \pi^{2} R^{4} } \right] \\ & \quad - \frac{{k_{S} }}{{L^{4} R^{4} }}\left[ {A_{55} \left( {l^{2} L^{4} n^{4} + L^{4} n^{2} R^{2} + l^{2} L^{2} m^{2} n^{2} \pi^{2} R^{2} } \right)} \right. \\ & \quad {\kern 1pt} \left. { + A_{44} \left( {l^{2} L^{2} m^{2} n^{2} \pi^{2} R^{2} + L^{2} m^{2} \pi^{2} R^{4} + l^{2} m^{4} \pi^{4} R^{4} } \right)} \right] \\ & \quad - \frac{{K_{W} }}{{L^{4} R^{4} }}\left[ {L^{4} R^{4} + \left( {e_{0} a} \right)^{2} L^{2} R^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right] \\ & \quad - \frac{{K_{P} }}{{L^{4} R^{4} }}\left[ {L^{4} n^{2} R^{2} + L^{2} m^{2} \pi^{2} R^{4} + \left( {e_{0} a} \right)^{2} L^{2} n^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right. \\ & \quad \left. { + \left( {e_{0} a} \right)^{2} m^{2} \pi^{2} R^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right] - \frac{{A_{22} }}{{L^{4} R^{4} }}\left[ {L^{4} R^{2} + l^{2} \left( {L^{4} n^{2} + L^{2} m^{2} \pi^{2} R^{2} } \right)} \right], \\ \end{aligned}$$
(111)
$$K_{34} = \frac{{ - A_{44} k_{S} }}{{L^{3} R^{2} }}m\pi \left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(112)
$$K_{35} = \frac{{A_{55} }}{{L^{2} R^{3} }}k_{S} n\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(113)
$$K_{41} = K_{14} = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} K_{53} = K_{35} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} K_{43} = K_{34} ,$$
(114)
$$K_{36} = \frac{1}{{L^{4} R^{3} }}\left( {E_{24} L^{2} n^{2} + E_{15} m^{2} \pi^{2} R} \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(115)
$$K_{37} = \frac{1}{{L^{4} R^{3} }}\left( {L^{2} n^{2} Q_{24} + m^{2} \pi^{2} Q_{15} R} \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(116)
$$K_{44} = \left( {\frac{{ - D_{66} n^{2} }}{{L^{2} R^{4} }} - \frac{{A_{44} k_{S} }}{{L^{2} R^{2} }} - \frac{{D_{11} m^{2} \pi^{2} }}{{L^{4} R^{2} }}} \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(117)
$$K_{45} = \frac{mn\pi }{{L^{3} R^{3} }}\left( {D_{12} + D_{66} } \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}$$
(118)
$$K_{46} = \frac{m\pi }{{L^{3} R^{2} }}\left( {E_{15} + E_{31} } \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(119)
$$K_{47} = \frac{m\pi }{{L^{3} R^{2} }}\left( {Q_{15} + Q_{31} } \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(120)
$$K_{55} = \left( {\frac{{ - D_{22} n^{2} }}{{L^{2} R^{4} }} - \frac{{A_{55} k_{S} }}{{L^{2} R^{2} }} - \frac{{D_{66} m^{2} \pi^{2} }}{{L^{4} R^{2} }}} \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(121)
$$K_{56} = \frac{ - n}{{L^{2} R^{3} }}\left( {E_{32} + E_{24} R} \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(122)
$$K_{57} = \frac{ - n}{{L^{2} R^{3} }}\left( {Q_{32} + Q_{24} R} \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(123)
$$K_{62} = - \frac{{E_{24} n}}{{L^{2} R^{3} }}\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(124)
$$K_{63} = - \frac{1}{{L^{4} R^{3} }}\left( {E_{24} L^{2} n^{2} + E_{15} m^{2} \pi^{2} R} \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(125)
$$K_{64} = \frac{ - m\pi }{{L^{3} R^{2} }}\left( {E_{15} + E_{31} } \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(126)
$$K_{65} = \frac{n}{{L^{2} R^{3} }}\left( {E_{32} + E_{24} R} \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(127)
$$\begin{gathered} K_{66} = \frac{{l^{2} }}{{L^{4} R^{2} }}\left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)\left[ { - m^{2} \pi^{2} X_{11} + L^{2} \left( {n^{4} X_{22} - X_{33} } \right)} \right] \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \frac{1}{{L^{2} }}\left[ {m^{2} \pi^{2} X_{11} + L^{2} \left( {n^{2} X_{22} + X_{33} } \right)} \right], \hfill \\ \end{gathered}$$
(128)
$$K_{67} = \frac{ - 1}{{L^{4} R^{2} }}\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right]\left[ {m^{2} \pi^{2} Y_{11} + L^{2} \left( {n^{2} Y_{22} + Y_{33} } \right)} \right],$$
(129)
$$K_{72} = \frac{ - 1}{{L^{2} R^{3} }}Q_{24} n\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],K_{71} = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} K_{54} = K_{45} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} K_{61} = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}$$
(130)
$$K_{73} = \frac{ - 1}{{L^{4} R^{3} }}\left( {L^{2} n^{2} Q_{24} + m^{2} \pi^{2} Q_{15} R} \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(131)
$$K_{74} = \frac{ - m\pi }{{L^{3} R^{2} }}\left( {Q_{15} + Q_{31} } \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(132)
$$K_{75} = \frac{n}{{L^{2} R^{4} }}\left( {Q_{32} + Q_{24} R^{2} } \right)\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(133)
$$\begin{gathered} K_{76} = \frac{1}{{L^{4} R^{2} }}\left[ {l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right]\left[ { - m^{2} \pi^{2} Y_{11} + L^{2} \left( {n^{4} Y_{22} - Y_{33} } \right)} \right] \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \frac{1}{{L^{2} }}\left[ {m^{2} \pi^{2} Y_{11} + L^{2} \left( {n^{2} Y_{22} + Y_{33} } \right)} \right], \hfill \\ \end{gathered}$$
(134)
$$K_{77} = \frac{ - 1}{{L^{4} R^{2} }}\left[ {L^{2} R^{2} + l^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right]\left[ {m^{2} \pi^{2} T_{11} + L^{2} \left( {n^{2} T_{22} + T_{33} } \right)} \right],$$
(135)
$$M_{11} = \frac{{I_{0} }}{{L^{2} R^{2} }}\left[ {L^{2} R^{2} + \left( {ea} \right)^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(136)
$$M_{14} = \frac{{I_{1} }}{{L^{2} R^{2} }}\left[ {L^{2} R^{2} + (ea)^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(137)
$$M_{25} = \frac{{I_{1} }}{{L^{2} R^{2} }}\left[ {L^{2} R^{2} + (ea)^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(138)
$$M_{44} = \frac{{I_{2} }}{{L^{2} R^{2} }}\left[ {L^{2} R^{2} + \left( {ea} \right)^{2} \left( {L^{2} n^{2} + m^{2} \pi^{2} R^{2} } \right)} \right],$$
(139)
$$M_{41} = M_{14} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} M_{52} = M_{25} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} M_{22} = M_{11} = M_{33} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} M_{55} = M_{44} ,$$
(140)
$$A_{11} = \int\limits_{ - h/2}^{h/2} {\tilde{c}_{11} } {\text{d}}z,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} A_{12} = \int\limits_{ - h/2}^{h/2} {\tilde{c}_{12} } {\text{d}}z,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} A_{22} = \int\limits_{ - h/2}^{h/2} {\tilde{c}_{22} } {\text{d}}z,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} A_{66} = \int\limits_{ - h/2}^{h/2} {\tilde{c}_{66} } {\text{d}}z,{\kern 1pt}$$
(141)
$$A_{44} = \int\limits_{ - h/2}^{h/2} {\tilde{c}_{44} } {\text{d}}z,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} A_{55} = \int\limits_{ - h/2}^{h/2} {\tilde{c}_{55} } {\text{d}}z,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} D_{11} = \int\limits_{ - h/2}^{h/2} {\tilde{c}_{11} } z^{2} {\text{d}}z,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} D_{12} = \int\limits_{ - h/2}^{h/2} {\tilde{c}_{12} } z^{2} {\text{d}}z,$$
(142)
$$D_{22} = \int\limits_{ - h/2}^{h/2} {\tilde{c}_{22} } z^{2} {\text{d}}z,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} D_{66} = \int\limits_{ - h/2}^{h/2} {\tilde{c}_{66} } z^{2} {\text{d}}z,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} E_{31} = \int\limits_{ - h/2}^{h/2} {\tilde{e}_{31} } z\beta \sin \left( {\beta z} \right){\text{d}}z,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}$$
(143)
$$E_{32} = \int\limits_{ - h/2}^{h/2} {\tilde{e}_{32} } z\beta \sin \left( {\beta z} \right){\text{d}}z,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} E_{15} = \int\limits_{ - h/2}^{h/2} {\tilde{e}_{15} } \cos \left( {\beta z} \right){\text{d}}z,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} E_{24} = \int\limits_{ - h/2}^{h/2} {\frac{{\tilde{e}_{24} \cos \left( {\beta z} \right)}}{R + z}} {\text{d}}z,{\kern 1pt}$$
(144)
$$X_{11} = \int\limits_{ - h/2}^{h/2} {\tilde{s}_{11} } \left[ {\cos \left( {\beta z} \right)} \right]^{2} {\text{d}}z,{\kern 1pt} X_{22} = \int\limits_{ - h/2}^{h/2} {\tilde{s}_{22} } \left[ {\frac{{\cos \left( {\beta z} \right)}}{R + z}} \right]^{2} {\text{d}}z,{\kern 1pt} {\kern 1pt} Q_{24} = \int\limits_{ - h/2}^{h/2} {\tilde{q}_{24} \frac{{\cos \left( {\beta z} \right)}}{R + z}{\text{d}}z} ,$$
(145)
$$X_{33} = \int\limits_{ - h/2}^{h/2} {\tilde{s}_{33} } \left[ {\beta \sin \left( {\beta z} \right)} \right]^{2} {\text{d}}z,Q_{15} = \int\limits_{ - h/2}^{h/2} {\tilde{q}_{15} \cos \left( {\beta z} \right)} {\text{d}}z,Q_{31} = \int\limits_{ - h/2}^{h/2} {\tilde{q}_{31} \beta z\sin \left( {\beta z} \right)} {\text{d}}z,$$
(146)
$$Q_{32} = \int\limits_{ - h/2}^{h/2} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{q}_{32} } \beta z\sin \left( {\beta z} \right){\text{d}}z,Y_{11} = \int\limits_{ - h/2}^{h/2} {\tilde{d}_{11} \cos^{2} \left( {\beta z} \right)} {\text{d}}z,Y_{22} = \int\limits_{ - h/2}^{h/2} {\tilde{d}_{22} \left[ {\frac{{\cos \left( {\beta z} \right)}}{R + z}} \right]}^{2} {\text{d}}z,$$
(147)
$$Y_{33} = \int\limits_{ - h/2}^{h/2} {\tilde{d}_{33} \left[ {\beta \sin \left( {\beta z} \right)} \right]^{2} {\text{d}}z} ,{\kern 1pt} {\kern 1pt} T_{11} = \int\limits_{ - h/2}^{h/2} {\tilde{\mu }_{11} {\text{cos}}^{{2}} \left( {\beta z} \right){\text{d}}z} ,T_{22} = \int\limits_{ - h/2}^{h/2} {\tilde{\mu }_{22} \left[ {\frac{{\cos \left( {\beta z} \right)}}{R + z}} \right]^{2} {\text{d}}z} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}$$
(148)
$${\kern 1pt} T_{33} = \int\limits_{ - h/2}^{h/2} {\tilde{\mu }_{33} \left[ {\beta {\text{sin}}\left( {\beta z} \right)} \right]^{2} {\text{d}}z} .$$
(149)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Bai, C. & Wang, J. Study on dynamic stability of magneto-electro-thermo-elastic cylindrical nanoshells resting on Winkler–Pasternak elastic foundations using nonlocal strain gradient theory. J Braz. Soc. Mech. Sci. Eng. 45, 23 (2023). https://doi.org/10.1007/s40430-022-03930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03930-z

Keywords

Navigation