Log in

Free vibration of axially FG curved beam on orthotropic Pasternak foundation via mixed FEM

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The main objective of this study is to present an accurate and consistent original formulation to describe the interaction between planar straight/curved beam structure and orthotropic foundation by highlighting the problematic orthotropic foundation models currently used in the literature. The proposed formulation introduces a consistent reduction of a 2D stress state of an elastic orthotropic foundation to a 1D form suitable for interaction with a beam. The formulation is also extended for curved beams resting on an arbitrarily orthotropic generalized Pasternak foundation by including a rocking effect. The beam is assumed to be made of a two-phase composite material of metal-matrix and ceramic-inclusion varying continuously through the parabolic beam axis. The effective material properties of the axially functionally graded material are predicted through a cubic local representative volume elements scheme. A two-noded curved beam element is employed based on a mixed finite element formulation based on Timoshenko beam theory by considering cross-sectional war** and the tests are performed over free vibration analyses. The new formulation of orthotropic Pasternak foundation for straight beam interaction is firstly verified by the results of a plate resting on orthotropic foundation. The flaws of existing formulations in the literature are explained, and the erroneous results produced by some of them are shown with comparison examples. The formulation is capable of modelling straight beams as well as general curved planar beams and orthotropic Pasternak foundation interaction problems. It is believed that the derived expression be safely implemented for further analyses, where beam like structures interacting with orthotropic foundation or substrate. Furthermore, this study presents free vibration results of several original benchmark examples using the mixed finite element formulation, e.g. straight and parabolic beams resting on an arbitrarily orthotropic generalized Pasternak foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zemskov AV, Tarlakovskii D (2022) V: Unsteady elastic diffusion bending model for a Timoshenko beam on a Winkler foundation: unsteady elastic diffusion bending model for a Timoshenko beam on a Winkler foundation. Arch Appl Mech. https://doi.org/10.1007/s00419-022-02112-6

    Article  Google Scholar 

  2. **a G (2022) Generalized foundation Timoshenko beam and its calculating methods. Arch Appl Mech. https://doi.org/10.1007/s00419-021-02090-1

    Article  Google Scholar 

  3. Zhang B, Chen F, Wang Q, Lin L (2020) Analytical model of buried beams on a tensionless foundation subjected to differential settlement. Appl Math Model 87:269–286. https://doi.org/10.1016/j.apm.2020.06.004

    Article  MathSciNet  MATH  Google Scholar 

  4. Lenci S, Clementi F (2020) Flexural wave propagation in infinite beams on a unilateral elastic foundation. Nonlinear Dyn 99:721–735. https://doi.org/10.1007/s11071-019-04944-4

    Article  MATH  Google Scholar 

  5. Ebrahimi F, Karimiasl M, Mahesh V (2021) Chaotic dynamics and forced harmonic vibration analysis of magneto-electro-viscoelastic multiscale composite nanobeam. Eng Comput 37:937–950. https://doi.org/10.1007/s00366-019-00865-3

    Article  Google Scholar 

  6. Toh W, Tan LB, Tse KM, Raju K, Lee HP, Tan VBC (2018) Numerical evaluation of buried composite and steel pipe structures under the effects of gravity. Steel Compos Struct 26(1):55–66

    Google Scholar 

  7. Liang R, Wu W, Yu F, Jiang G, Liu J (2018) Simplified method for evaluating shield tunnel deformation due to adjacent excavation. Tunn Undergr Sp Technol 71:94–105. https://doi.org/10.1016/j.tust.2017.08.010

    Article  Google Scholar 

  8. Cheng H, Chen R, Wu H, Meng F (2020) A simplified method for estimating the longitudinal and circumferential behaviors of the shield-driven tunnel adjacent to a braced excavation. Comput Geotech 123:103595. https://doi.org/10.1016/j.compgeo.2020.103595

    Article  Google Scholar 

  9. Xu Q, Ou X, Au FTK, Lou P, **ao Z (2016) Effects of track irregularities on environmental vibration caused by underground railway. Eur J Mech A/Solids 59:280–293. https://doi.org/10.1016/j.euromechsol.2016.04.005

    Article  Google Scholar 

  10. Chen F, Lin L, Wang J (2019) Energy method as solution for deformation of geosynthetic-reinforced embankment on Pasternak foundation. Appl Math Model 66:424–439. https://doi.org/10.1016/j.apm.2018.09.025

    Article  MathSciNet  MATH  Google Scholar 

  11. Winkler E (1867) Die Lehre von der Elasticitaet und Festigkeit. Dominicus, Prag

  12. Pasternak PL (1954) On a new method of analysis of an elastic foundation by means of two foundation constants. Cosudarstrennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture. USSR, Moscow, pp 1–56

    Google Scholar 

  13. Kerr AD (1964) Elastic and viscoelastic foundation models. J Appl Mech 31:491–498. https://doi.org/10.1115/1.3629667

    Article  MATH  Google Scholar 

  14. Özçelikörs Y, Omurtag MH, Demir H (1997) Analysis of orthotropic plate-foundation interaction by mixed finite element formulation using Gâteaux differential. Comput Struct 62:93–106. https://doi.org/10.1016/S0045-7949(96)00289-1

    Article  MATH  Google Scholar 

  15. Omurtag MH, Özütok A, Aköz AY, Özçelikörs Y (1997) Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed Finite Element Formulation Based on Gâteaux Differential. Int J Numer Methods Eng 40:295–317. https://doi.org/10.1002/(SICI)1097-0207(19970130)40:2%3c295::AID-NME66%3e3.0.CO;2-2

    Article  Google Scholar 

  16. Doğruoğlu AN, Omurtag MH (2000) Stability analysis of composite-plate foundation interaction by mixed FEM. J Eng Mech 126:928–936. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(928)

    Article  Google Scholar 

  17. Kutlu A, Hakkı Omurtag M (2012) Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method. Int J Mech Sci 65:64–74. https://doi.org/10.1016/j.ijmecsci.2012.09.004

    Article  Google Scholar 

  18. Kutlu A, Uğurlu B, Omurtag MH, Ergin A (2012) Dynamic response of Mindlin plates resting on arbitrarily orthotropic Pasternak foundation and partially in contact with fluid. Ocean Eng 42:112–125. https://doi.org/10.1016/j.oceaneng.2012.01.010

    Article  Google Scholar 

  19. Ghorbanpour Arani A, Kolahchi R, Zarei MS (2015) Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory. Compos Struct 132:506–526. https://doi.org/10.1016/j.compstruct.2015.05.065

    Article  Google Scholar 

  20. Ghorbanpour Arani A, Haghparast E, BabaAkbar Zarei H (2016) Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field. Phys B Condens Matter 495:35–49. https://doi.org/10.1016/j.physb.2016.04.039

    Article  Google Scholar 

  21. Ghorbanpour Arani A, Jalaei MH (2016) Transient behavior of an orthotropic graphene sheet resting on orthotropic visco-Pasternak foundation. Int J Eng Sci 103:97–113. https://doi.org/10.1016/j.ijengsci.2016.02.006

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghorbanpour Arani A, Jamali M, Mosayyebi M, Kolahchi R (2016) Wave propagation in FG-CNT-reinforced piezoelectric composite micro plates using viscoelastic quasi-3D sinusoidal shear deformation theory. Compos Part B Eng 95:209–224. https://doi.org/10.1016/j.compositesb.2016.03.077

    Article  Google Scholar 

  23. Rabani Bidgoli M, Saeed Karimi M, Ghorbanpour Arani A (2016) Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium. Mech Adv Mater Struct 23:819–831. https://doi.org/10.1080/15376494.2015.1029170

    Article  Google Scholar 

  24. Kolahchi R, Safari M, Esmailpour M (2016) Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium. Compos Struct 150:255–265. https://doi.org/10.1016/j.compstruct.2016.05.023

    Article  Google Scholar 

  25. Eftekhar H, Zeynali H, Nasihatgozar M (2018) Electro-magneto temperature-dependent vibration analysis of functionally graded-carbon nanotube-reinforced piezoelectric Mindlin cylindrical shells resting on a temperature-dependent, orthotropic elastic medium. Mech Adv Mater Struct 25:1–14. https://doi.org/10.1080/15376494.2016.1231356

    Article  Google Scholar 

  26. Zamani HA, Aghdam MM, Sadighi M (2018) Free vibration of thin functionally graded viscoelastic open-cell foam plates on orthotropic visco-Pasternak medium. Compos Struct 193:42–52. https://doi.org/10.1016/j.compstruct.2018.03.061

    Article  Google Scholar 

  27. Ghorbanpour Arani A, Kiani F (2018) Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions. Steel Compos Struct 28:149–165. https://doi.org/10.12989/SCS.2018.28.2.149

    Article  Google Scholar 

  28. Cheraghbak A, Dehkordi MB, Golestanian H (2019) Vibration analysis of sandwich beam with nanocomposite facesheets considering structural dam** effects. Steel Compos Struct 32:795–806. https://doi.org/10.12989/SCS.2019.32.6.795

    Article  Google Scholar 

  29. Mohammadimehr M, Mehrabi M, Mousavinejad FS (2021) 2D magneto-mechanical vibration analysis of a micro composite Timoshenko beam resting on orthotropic medium. Smart Struct Syst Int J 27(1):1–18. https://doi.org/10.12989/sss.2021.27.1.001

    Article  Google Scholar 

  30. Nie GJ, Zhong Z, Batra RC (2011) Material tailoring for functionally graded hollow cylinders and spheres. Compos Sci Technol 71:666–673. https://doi.org/10.1016/j.compscitech.2011.01.009

    Article  Google Scholar 

  31. Sola A, Bellucci D, Cannillo V (2016) Functionally graded materials for orthopedic applications—an update on design and manufacturing. Biotechnol Adv 34:504–531. https://doi.org/10.1016/j.biotechadv.2015.12.013

    Article  Google Scholar 

  32. Sofiyev AH (2019) Review of research on the vibration and buckling of the FGM conical shells. Compos Struct 211:301–317. https://doi.org/10.1016/j.compstruct.2018.12.047

    Article  Google Scholar 

  33. Çömez İ, Aribas UN, Kutlu A, Omurtag MH (2021) An Exact Elasticity Solution for Monoclinic Functionally Graded Beams. Arab J Sci Eng 46:5135–5155. https://doi.org/10.1007/s13369-021-05434-9

    Article  Google Scholar 

  34. Hussaini MB, Malekzadeh P (2021) Effects of cutout and thermal environment on vibration of FG cylindrical micropanels based on the three-dimensional MCST. J Brazilian Soc Mech Sci Eng 43:237. https://doi.org/10.1007/s40430-021-02935-4

    Article  Google Scholar 

  35. Çömez İ, Aribas UN, Kutlu A, Omurtag MH (2022) Two-dimensional solution of functionally graded piezoelectric-layered beams. J Brazilian Soc Mech Sci Eng 44:101. https://doi.org/10.1007/s40430-022-03414-0

    Article  Google Scholar 

  36. Dorduncu M, Kutlu A, Madenci E, Rabczuk T (2022) Nonlocal modeling of bi-material and modulus graded plates using peridynamic differential operator. Eng Comput. https://doi.org/10.1007/s00366-022-01699-2

    Article  Google Scholar 

  37. Yang C, Ma W (2022) Low-velocity impact response of FG-CNTRC laminated plates with negative Poisson’s ratios and clamped boundary conditions. J Brazilian Soc Mech Sci Eng 44:337. https://doi.org/10.1007/s40430-022-03627-3

    Article  Google Scholar 

  38. Arefi M, Mohammadi M, Tabatabaeian A, Rabczuk T (2020) Free vibration analysis of FG-CNTRC cylindrical pressure vessels resting on Pasternak foundation with various boundary conditions. Comput Mater Contin Contin 62:1001–1023. https://doi.org/10.32604/cmc.2020.08052

    Article  Google Scholar 

  39. Çömez İ, Omurtag MH (2021) Contact problem between a rigid punch and a functionally graded orthotropic layer resting on a Pasternak foundation. Arch Appl Mech. https://doi.org/10.1007/s00419-021-01988-0

    Article  Google Scholar 

  40. Zhang LH, Lai SK, Wang C, Yang J (2021) DSC regularized Dirac-delta method for dynamic analysis of FG graphene platelet-reinforced porous beams on elastic foundation under a moving load. Compos Struct 255:112865. https://doi.org/10.1016/j.compstruct.2020.112865

    Article  Google Scholar 

  41. Mollamahmutoğlu Ç, Mercan A, Levent A (2022) A comprehensive mechanical response and dynamic stability analysis of elastically restrained bi-directional functionally graded porous microbeams in the thermal environment via mixed finite elements. J Brazilian Soc Mech Sci Eng 44:333. https://doi.org/10.1007/s40430-022-03616-6

    Article  Google Scholar 

  42. Liu H, Zhang Q, Ma J (2021) Thermo-mechanical dynamics of two-dimensional FG microbeam subjected to a moving harmonic load. Acta Astronaut 178:681–692. https://doi.org/10.1016/j.actaastro.2020.09.045

    Article  Google Scholar 

  43. Deb Singha T, Rout M, Bandyopadhyay T, Karmakar A (2021) Free vibration of rotating pretwisted FG-GRC sandwich conical shells in thermal environment using HSDT. Compos Struct 257:113144. https://doi.org/10.1016/j.compstruct.2020.113144

    Article  Google Scholar 

  44. Kar UK, Srinivas J (2022) Frequency analysis and shock response studies in bidirectional functionally graded microbeam with thermal effects. J Brazilian Soc Mech Sci Eng 44:311. https://doi.org/10.1007/s40430-022-03615-7

    Article  Google Scholar 

  45. Rajasekaran S, Khaniki HB, Ghayesh MH (2022) Static, stability and dynamic characteristics of asymmetric bi-directional functionally graded sandwich tapered elastic arches in thermo-mechanical environments. Eur J Mech A/Solids 92:104447. https://doi.org/10.1016/j.euromechsol.2021.104447

    Article  MathSciNet  MATH  Google Scholar 

  46. Shvartsman B, Majak J (2016) Numerical method for stability analysis of functionally graded beams on elastic foundation. Appl Math Model 40:3713–3719. https://doi.org/10.1016/j.apm.2015.09.060

    Article  MathSciNet  MATH  Google Scholar 

  47. Calim FF (2016) Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Compos Part B Eng 103:98–112. https://doi.org/10.1016/j.compositesb.2016.08.008

    Article  Google Scholar 

  48. Ebrahimi F, Barati MR (2018) Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium. Proc Inst Mech Eng Part C J Mech Eng Sci 232:2067–2078. https://doi.org/10.1177/0954406217713518

    Article  Google Scholar 

  49. Robinson MTA, Adali S (2018) Buckling of nonuniform and axially functionally graded nonlocal Timoshenko nanobeams on Winkler-Pasternak foundation. Compos Struct 206:95–103. https://doi.org/10.1016/j.compstruct.2018.07.046

    Article  Google Scholar 

  50. Calim FF (2020) Vibration analysis of functionally graded timoshenko beams on winkler-pasternak elastic foundation. Iran J Sci Technol Trans Civ Eng 44:901–920. https://doi.org/10.1007/s40996-019-00283-x

    Article  Google Scholar 

  51. Wang Y, Wu D (2016) Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load. Acta Astronaut 127:171–181. https://doi.org/10.1016/j.actaastro.2016.05.030

    Article  Google Scholar 

  52. Mirjavadi SS, Rabby S, Shafiei N, Afshari BM, Kazemi M (2017) On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment. Appl Phys A Mater Sci Process 123:315. https://doi.org/10.1007/s00339-017-0918-1

    Article  Google Scholar 

  53. Sharma P, Singh R, Hussain M (2020) On modal analysis of axially functionally graded material beam under hygrothermal effect. Proc Inst Mech Eng Part C J Mech Eng Sci 234:1085–1101. https://doi.org/10.1177/0954406219888234

    Article  Google Scholar 

  54. Wang Y, Ren H, Fu T, Shi C (2020) Hygrothermal mechanical behaviors of axially functionally graded microbeams using a refined first order shear deformation theory. Acta Astronaut 166:306–316. https://doi.org/10.1016/j.actaastro.2019.10.036

    Article  Google Scholar 

  55. Ebrahimi-Mamaghani A, Sotudeh-Gharebagh R, Zarghami R, Mostoufi N (2022) Thermo-mechanical stability of axially graded Rayleigh pipes. Mech Based Des Struct Mach 50:412–441. https://doi.org/10.1080/15397734.2020.1717967

    Article  Google Scholar 

  56. Ge R, Liu F, Wang C, Ma L, Wang J (2022) Calculation of critical load of axially functionally graded and variable cross-section timoshenko beams by using interpolating matrix method. Mathematics. https://doi.org/10.3390/math10132350

    Article  Google Scholar 

  57. Wadi KJ, Yadeem JM, Mustafa Khazaal S, Al-Ansari LS, Abdulsamad HJ (2022) Static deflection calculation for axially FG cantilever beam under uniformly distributed and transverse tip loads. Results Eng 14:100395

    Article  Google Scholar 

  58. Omurtag MH, Aköz AY (1993) A compatible cylindrical shell element for stiffened cylindrical shells in a mixed finite element formulation. Comput Struct 49:363–370. https://doi.org/10.1016/0045-7949(93)90115-T

    Article  MATH  Google Scholar 

  59. Eratlı N, Argeso H, Çalım FF, Temel B, Omurtag MH (2014) Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM. J Sound Vib 333:3671–3690. https://doi.org/10.1016/j.jsv.2014.03.017

    Article  Google Scholar 

  60. Kutlu A, Dorduncu M, Rabczuk T (2021) A novel mixed finite element formulation based on the refined zigzag theory for the stress analysis of laminated composite plates. Compos Struct 267:113886. https://doi.org/10.1016/j.compstruct.2021.113886

    Article  Google Scholar 

  61. Eratli N, Yilmaz M, Darilmaz K, Omurtag MH (2016) Dynamic analysis of helicoidal bars with non-circular cross-sections via mixed FEM. Struct Eng Mech 57:221–238

    Article  Google Scholar 

  62. Aribas UN, Ermis M, Kutlu A, Eratli N, Omurtag MH (2020) Forced vibration analysis of composite-geometrically exact elliptical cone helices via mixed FEM. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.1824048

    Article  Google Scholar 

  63. Aribas UN, Ermis M, Omurtag MH (2021) The static and stress analyses of axially functionally graded exact super-elliptical beams via mixed FEM. Arch Appl Mech 91:4783–4796. https://doi.org/10.1007/s00419-021-02033-w

    Article  Google Scholar 

  64. Aribas UN, Ermis M, Eratli N, Omurtag MH (2019) The static and dynamic analyses of war** included composite exact conical helix by mixed FEM. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2018.10.018

    Article  Google Scholar 

  65. Struik DJ (1988) Lectures on classical differential geometry. Dover, Mineola

    MATH  Google Scholar 

  66. Ermis M, Omurtag MH (2017) Static and dynamic analysis of conical helices based on exact geometry via mixed FEM. Int J Mech Sci 131–132:296–304. https://doi.org/10.1016/j.ijmecsci.2017.07.010

    Article  Google Scholar 

  67. Tornabene F, Fantuzzi N, Bacciocchi M (2019) Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis. Eng Anal Bound Elem 100:24–47. https://doi.org/10.1016/j.enganabound.2017.07.029

    Article  MathSciNet  MATH  Google Scholar 

  68. Guo Q, Liu Y, Chen B, Zhao Y (2021) An efficient stochastic natural frequency analysis method for axially varying functionally graded material pipe conveying fluid. Eur J Mech A/Solids 86:104155. https://doi.org/10.1016/j.euromechsol.2020.104155

    Article  MathSciNet  MATH  Google Scholar 

  69. Touloukian YS (1967) Thermophysical properties of high temperature solid materials. Macmillan, New York

    Google Scholar 

  70. Loy CT, Lam KY, Reddy JN (1999) Vibration of functionally graded cylindrical shells. Int J Mech Sci 41:309–324. https://doi.org/10.1016/S0020-7403(98)00054-X

    Article  MATH  Google Scholar 

  71. Shen H-S, Wang Z-X (2012) Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates. Compos Struct 94:2197–2208. https://doi.org/10.1016/j.compstruct.2012.02.018

    Article  Google Scholar 

  72. Gasik MM, Lilius RR (1994) Evaluation of properties of W-Cu functional gradient materials by micromechanical model. Comput Mater Sci 3:41–49. https://doi.org/10.1016/0927-0256(94)90151-1

    Article  Google Scholar 

  73. Gasik MM (1998) Micromechanical modelling of functionally graded materials. Comput Mater Sci 13:42–55. https://doi.org/10.1016/S0927-0256(98)00044-5

    Article  Google Scholar 

  74. Dorduncu M, Kemal Apalak M, Cherukuri HP (2015) Elastic wave propagation in functionally graded circular cylinders. Compos Part B Eng 73:35–48. https://doi.org/10.1016/j.compositesb.2014.12.021

    Article  Google Scholar 

  75. Dorduncu M, Apalak MK, Reddy JN (2019) Stress wave propagation in a through-thickness functionally graded adhesive layer. J Adhes Sci Technol 33:2329–2355. https://doi.org/10.1080/01694243.2019.1642435

    Article  Google Scholar 

  76. Karami B, Shahsavari D, Janghorban M, Li L (2019) Influence of homogenization schemes on vibration of functionally graded curved microbeams. Compos Struct 216:67–79. https://doi.org/10.1016/j.compstruct.2019.02.089

    Article  Google Scholar 

  77. **e K, Wang Y, Fan X, Chen H (2022) Free vibration and dynamic response of micro-scale functionally graded circular arches by using a quasi-3D theory. J Brazilian Soc Mech Sci Eng 44:130. https://doi.org/10.1007/s40430-022-03423-z

    Article  Google Scholar 

  78. Reddy JN, Chin CD (1998) Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stress 21:593–626. https://doi.org/10.1080/01495739808956165

    Article  Google Scholar 

  79. Carrera E, Fazzolari FA, Cinefra M (2016) Thermal stress analysis of composite beams, plates and shells: computational modelling and applications. Academic Press, Cambridge

    Google Scholar 

  80. Jones RM (1999) Mechanics of composite materials, 2nd edn. Taylor & Francis, Philadelphia

    Google Scholar 

  81. Yıldırım V (1999) Governing equations of initially twisted elastic space rods made of laminated composite materials. Int J Eng Sci 37:1007–1035. https://doi.org/10.1016/S0020-7225(98)00106-2

    Article  MATH  Google Scholar 

  82. Yousefi A, Rastgoo A (2011) Free vibration of functionally graded spatial curved beams. Compos Struct 93:3048–3056. https://doi.org/10.1016/j.compstruct.2011.04.024

    Article  Google Scholar 

  83. Aribas UN, Ermis M, Kutlu A, Eratlı N, Omurtag MH (2018) Forced vibration analysis of war** considered curved composite beams resting on viscoelastic foundation. Gazi Univ J Sci 31:1093–1105

    Google Scholar 

  84. Jog CS, Mokashi IS (2014) A finite element method for the Saint-Venant torsion and bending problems for prismatic beams. Comput Struct 135:62–72

    Article  Google Scholar 

  85. Aköz AY, Omurtag MH, Doḡruoḡlu AN (1991) The mixed finite element formulation for three-dimensional bars. Int J Solids Struct 28:225–234. https://doi.org/10.1016/0020-7683(91)90207-V

    Article  Google Scholar 

  86. Omurtag MH, Aköz AY (1992) The mixed finite element solution of helical beams with variable cross-section under arbitrary loading. Comput Struct 43:325–331. https://doi.org/10.1016/0045-7949(92)90149-T

    Article  Google Scholar 

  87. Oden JT, Reddy JN (1976) Variational methods in theoretical mechanics. Springer-Verlag, Cham

    Book  MATH  Google Scholar 

  88. ANSYS® Academic Research Mechanical, Release 17.1, Canonsburg, Pennsylvania.

  89. Lee JK, Jeong S (2016) Flexural and torsional free vibrations of horizontally curved beams on Pasternak foundations. Appl Math Model 40:2242–2256. https://doi.org/10.1016/j.apm.2015.09.024

    Article  MathSciNet  MATH  Google Scholar 

  90. Selvadurai APS (1979) Elastic analysis of soil-foundation interaction, Developments in Geotechnical Engineering. Elsevier, Amsterdam, Netherlands

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Research Foundation of ITU under Project No. MGA-2017-40739. The authors gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merve Ermis.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Technical Editor: Aurelio Araujo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermis, M., Kutlu, A., Eratlı, N. et al. Free vibration of axially FG curved beam on orthotropic Pasternak foundation via mixed FEM. J Braz. Soc. Mech. Sci. Eng. 44, 597 (2022). https://doi.org/10.1007/s40430-022-03853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03853-9

Keywords

Navigation