Log in

Experimental and numerical study of inelastic behavior based on simulated cylinder head specimen under thermal cycling conditions

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

During the start-stop cycle of marine diesel engines, the cylinder head bears the cyclic thermal stress and produces irreversible deformation. Previous studies mainly predicted the thermomechanical fatigue life of cylinder heads based on the strain fatigue damage criterion, but the multi-factor damage mechanism and law of thermal cycle load on the structural integrity of cylinder heads are not clear. A transient thermal cycle analysis method of the viscoelastic plastic Chaboche model was developed to quantitatively account for the marine engine cylinder head's local deformation and leakage failure. The Chaboche model combines the temperature-dependent nonlinear kinematic hardening equation and Norton-Bailey creep equation. A thermal cycling test of simulated cylinder head specimen was designed to cautiously verify the inelastic cyclic behavior of the multiaxial thermal and structural coupling effect. The model and numerical method are verified by the deformation and fatigue test of the specimen. Then the permanent deformation and leakage of the cylinder head and water-cooled valve seat are analyzed. The results show that multiaxial thermal cycle simulation verified the deformation prediction with an error of no more than 14%. Inelastic deformation induced by temperature cycling leads to gradual leakage failure in the exhaust nose bridge area of the cylinder head. The irreversible deformation gradually reduces the contact sealing force, and the cyclic loading plasticity that dominates is 8.36 times that of the creep deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(C_{i}\) :

Kinematic hardening parameters

\(E\) :

Young's modulus

\(Q\) :

Saturation value of R

\(R\) :

Isotropic hardening parameter

\(R_{{{\text{th}}}}\) :

Restraint ratio

\(T\) :

Temperature

\(X\) :

Back stress tensor

\(b\) :

Isotropic hardening parameter

\(c\) :

Specific heat

\(p\) :

Equivalent plastic strain

\(\alpha\) :

Thermal expansion coefficient

\(\varepsilon_{{\text{c}}}\) :

Creep strain

\(\varepsilon_{{\text{p}}}\) :

Plastic strain

\(\varepsilon_{{{\text{mech}}}}\) :

Mechanical strain

\(\varepsilon_{{{\text{th}}}}\) :

Thermal strain

\(\sigma\) :

Stress tensor

\(\sigma_{0}\) :

Yield stress

\(\lambda\) :

Thermal conductivity

\(\gamma_{i}\) :

Kinematic hardening parameters

References

  1. Pirker G, Wimmer A (2017) Sustainable power generation with large gas engines. Energy Convers Manag 149:1048–1065

    Article  Google Scholar 

  2. Pierce D, Haynes A, Hughes J et al (2019) High temperature materials for heavy duty diesel engines: historical and future trends. Prog Mater Sci 103:109–179

    Article  Google Scholar 

  3. Bree J (1966) Ratchet and fatigue mechanisms in sealed fuel pins for nuclear reactors. TRG Report, D

  4. Thomas J, Verger L, Bignonnet A et al (2004) Thermomechanical design in the automotive industry. Fatigue Fract Eng Mater Struct 27(10):887–895

    Article  Google Scholar 

  5. **g GX, Zhang MX, Qu S et al (2018) Investigation into diesel engine cylinder head failure. Eng Fail Anal 90:36–46

    Article  Google Scholar 

  6. Ghodrat S, Kalra A, Kestens LA et al (2019) Thermo-mechanical fatigue lifetime assessment of spheroidal cast iron at different thermal constraint levels. Metals 9(10):1068

    Article  Google Scholar 

  7. Compeau DR, Higgins CA (1995) ASTM E2368–10, standard practice for strain controlled thermomechanical fatigue testing. MIS Q 19(2):189–211

    Article  Google Scholar 

  8. Hähner P, Rinaldi C, Bicego V et al (2008) Research and development into a European code-of-practice for strain-controlled thermo-mechanical fatigue testing. Int J Fatigue 30(2):372–381

    Article  Google Scholar 

  9. Grieb MB, Christ HJ, Plege B (2010) Thermomechanical fatigue of cast aluminium alloys for cylinder head applications–experimental characterization and life prediction. Procedia Eng 2(1):1767–1776

    Article  Google Scholar 

  10. Wu X, Quan G, MacNeil R et al (2015) Thermomechanical fatigue of ductile cast iron and its life prediction. Metall Mater Trans A 46(6):2530–2543

    Article  Google Scholar 

  11. Lopez-Covaleda EA, Ghodrat S, Kestens LA (2020) Lifetime and damage characterization of compacted graphite iron during thermo-mechanical fatigue under varying constraint conditions. Metall Mater Trans A 51(1):226–236

    Article  Google Scholar 

  12. Lekakh SN, Buchely M, O’Malley R et al (2021) Thermo-cycling fatigue of SiMo ductile iron using a modified thermo-mechanical test. Int J Fatigue 148:106218

    Article  Google Scholar 

  13. Fissolo A, Amiable S, Ancelet O et al (2009) Crack initiation under thermal fatigue: an overview of CEA experience. Part I: Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue. Int J Fatigue 31(3):587–600

    Article  Google Scholar 

  14. Li Z, Li J, Chen Z, Guo J, Zhu Y et al (2021) Experimental and computational study on thermo-mechanical fatigue life of aluminium alloy piston. Fatigue Fract Eng Mater Struct 44(1):141–155

    Article  Google Scholar 

  15. Szmytka F, Salem M, Rezai-Aria F et al (2015) Thermal fatigue analysis of automotive diesel piston: experimental procedure and numerical protocol. Int J Fatigue 73:48–57

    Article  Google Scholar 

  16. Beesley R, Chen H, Hughes M (2017) A novel simulation for the design of a low cycle fatigue experimental testing programme. Comput Struct 178:105–118

    Article  Google Scholar 

  17. Trampert S, Gocmez T, Pischinger S (2008) Thermomechanical fatigue life prediction of cylinder heads in combustion engines. J Eng Gas Turbines Power 130(1):012806

    Article  Google Scholar 

  18. Googarchin HS, Sharifi SMH, Forouzesh F et al (2017) Comparative study on the fatigue criteria for the prediction of failure in engine structure. Eng Fail Anal 79:714–725

    Article  Google Scholar 

  19. Zhang H, Cui Y, Liang G, Li L et al (2021) Fatigue life prediction analysis of high-intensity marine diesel engine cylinder head based on fast thermal fluid solid coupling method. J Braz Soc Mech Sci Eng 43(6):1–15

    Google Scholar 

  20. Yang W, Pang J, Wang L et al (2022) Thermo-mechanical fatigue life prediction based on the simulated component of cylinder head. Eng Fail Anal 135:106105

    Article  Google Scholar 

  21. Szmytka F, Rémy L, Maitournam H et al (2010) New flow rules in elasto-viscoplastic constitutive models for spheroidal graphite cast-iron. Int J Plast 26(6):905–924

    Article  Google Scholar 

  22. Hosseini E, Holdsworth SR, Flueeler U (2018) A temperature-dependent asymmetric constitutive model for cast irons under cyclic loading conditions. J Strain Anal Eng Des 53(2):106–114

    Article  Google Scholar 

  23. Bartošák M, Španiel M, Doubrava K (2020) Unified viscoplasticity modelling for a SiMo 4.06 cast iron under isothermal low-cycle fatigue-creep and thermo-mechanical fatigue loading conditions. Int J Fatigue 136:105566

    Article  Google Scholar 

  24. Norman V, Calmunger M (2019) On the micro-and macroscopic elastoplastic deformation behaviour of cast iron when subjected to cyclic loading. Int J Plast 115:200–215

    Article  Google Scholar 

  25. Song J, Bing SUN (2018) Damage localization effects of the regeneratively-cooled thrust chamber wall in LOX/methane rocket engines. Chin J Aeronaut 31(8):1667–1678

    Article  Google Scholar 

  26. Cho NK, Chen H, Boyle JT et al (2018) Enhanced fatigue damage under cyclic thermo-mechanical loading at high temperature by structural creep recovery mechanism. Int J Fatigue 113:149–159

    Article  Google Scholar 

  27. Chaboche JL (1989) Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int J Plast 5(3):247–302

    Article  Google Scholar 

  28. Chaboche JL (1991) On some modifications of kinematic hardening to improve the description of ratchetting effects. Int J Plast 7(7):661–678

    Article  Google Scholar 

  29. Shi L, Wang ZG, Zhang SL (2015) Creep deformation of ductile cast iron cooling staves. Ironmak Steelmak 42(5):339–345

    Article  Google Scholar 

  30. Ostergren WJ (1976) A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue. J Test Eval 4(5):327–339

    Article  Google Scholar 

  31. Ghahremaninezhad A, Ravi-Chandar K (2012) Deformation and failure in nodular cast iron. Acta Mater 60(5):2359–2368

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by "National Key Research and Development Project of China No. 2017YFE0130800" and Project 52006136 of National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **nqi Qiao or Yi Cui.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest connected with the work submitted.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liang, G., Qiao, X. et al. Experimental and numerical study of inelastic behavior based on simulated cylinder head specimen under thermal cycling conditions. J Braz. Soc. Mech. Sci. Eng. 44, 372 (2022). https://doi.org/10.1007/s40430-022-03652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03652-2

Keywords

Navigation