Log in

Crushing performance of auxetic tubes under quasi-static and impact loading

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate the energy absorption behavior of some reticulated tubes with different auxetic and non-auxetic wall grid patterns. Re-entrant, arrow-head and anti-tetrachiral were the three types of cellular patterns for auxetic reticulated tubes, and the conventional honeycomb pattern was used for the non-auxetic tubes. All of the designed specimens were fabricated by laser rotary cutting machine on steel tubes, and the crushing tests were performed by a universal testing machine and drop weight machine for quasi-static and impact loading rates, respectively. Also, the hollow reticulated tubes were filled with polyurethane foam to investigate the effect of filler on the crushing behavior of these novel tubes. Peak force, mean force, crushing force efficiency, total absorbed energy and specific absorbed energy were used as evaluating parameters. The results illustrate that the auxetic tubes showed a significant increase in SEA, CFE and EA parameters compared to non-auxetic conventional structures. Foam filling of the structures caused symmetric deformation and shows the benefit of auxetic pattern even in quasi-static loading. Also, a numerical analysis was carried out to simulate the experimental tests and a comprehensive discussion is performed, and based on the validation of the FE model versus the experimental crushing response the parametric study was conducted to understand further the effects of various loading rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Gao Q, Zhao X, Wang C, Wang L, Ma Z (2018) Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading. Mater Des 143:120–130. https://doi.org/10.1016/j.matdes.2018.01.063

    Article  Google Scholar 

  2. Zhang J, Lu G, You Z (2020) Large deformation and energy absorption of additively manufactured auxetic materials and structures : a review. Compos Part B 201:108340. https://doi.org/10.1016/j.compositesb.2020.108340

    Article  Google Scholar 

  3. Ghamarian A, Azarakhsh S (2019) Axial crushing analysis of polyurethane foam-filled combined thin-walled structures : experimental and numerical analysis. Int J Crashworthiness 24(6):632–644. https://doi.org/10.1080/13588265.2018.1506604

    Article  Google Scholar 

  4. Hussein RD, Ruan D, Lu G, Guillow S, Yoon JW (2017) crossmark. Thin Walled Struct 110:140–154. https://doi.org/10.1016/j.tws.2016.10.023

    Article  Google Scholar 

  5. Hanssen AG, Langseth M, Hopperstad OS (1999) Static crushing of square aluminium extrusions with aluminium foam filler. Int J Mech Sci 41(8):967–993. https://doi.org/10.1016/s0020-7403(98)00064-2

    Article  MATH  Google Scholar 

  6. Reddy TY, Wall RJ (1988) Axial compression of foam-filled thin-walled circular tubes. Int J Impact Eng 7(2):151–166. https://doi.org/10.1016/0734-743X(88)90023-1

    Article  Google Scholar 

  7. Shiravand A, Asgari M (2019) Hybrid metal-composite conical tubes for energy absorption; theoretical development and numerical simulation. Thin-Walled Struct 145:106442. https://doi.org/10.1016/j.tws.2019.106442

    Article  Google Scholar 

  8. Ge C, Gao Q, Wang L (2018) Theoretical and numerical analysis of crashworthiness of elliptical thin-walled tube. Int J Mech Sci 148:467–474. https://doi.org/10.1016/j.ijmecsci.2018.09.008

    Article  Google Scholar 

  9. Shen Y, Wu Z, Hu X (2020) Effect of reinforcement layer number on energy absorption of aluminum-CFRP hybrid square tubes under axial loading: experimental and numerical study. Thin-Walled Struct 155:106935

    Article  Google Scholar 

  10. Carneiro VH, Puga H (2018) Axisymmetric auxetics. Compos Struct. https://doi.org/10.1016/j.compstruct.2018.07.116

    Article  Google Scholar 

  11. Guo Y et al (2020) Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerosp Sci Technol 98:105662. https://doi.org/10.1016/j.ast.2019.105662

    Article  Google Scholar 

  12. Lee W et al (2019) Effect of auxetic structures on crash behavior of cylindrical tube. Compos Struct 208:836–846. https://doi.org/10.1016/j.compstruct.2018.10.068

    Article  Google Scholar 

  13. Najafi M, Ahmadi H, Liaghat Gh (2022) Investigation on the flexural properties of sandwich beams with auxetic core. J Braz Soc Mech Sci Eng 44:61. https://doi.org/10.1007/s40430-022-03368-3

    Article  Google Scholar 

  14. Novak N, Vesenjak M, Tanaka S, Hokamoto K, Ren Z (2019) Compressive behaviour of chiral auxetic cellular structures at different strain rates. Int J Impact Eng 141(October):2020. https://doi.org/10.1016/j.ijimpeng.2020.103566

    Article  Google Scholar 

  15. Yin H, Wen G, Liu Z, Qing Q (2014) Thin-Walled Structures Crashworthiness optimization design for foam- fi lled multi-cell thin-walled structures. Thin Walled Struct 75:8–17. https://doi.org/10.1016/j.tws.2013.10.022

    Article  Google Scholar 

  16. Guillow SR, Lu G, Grzebieta RH (2001) Quasi-static axial compression of thin-walled circular aluminium tubes. Int J Mech Sci 43(9):2103–2123. https://doi.org/10.1016/S0020-7403(01)00031-5

    Article  MATH  Google Scholar 

  17. Hou X, Deng Z, Zhang K (2016) Dynamic crushing strength analysis of auxetic honeycombs. Acta Mech Solida Sin 29(5):490–501. https://doi.org/10.1016/S0894-9166(16)30267-1

    Article  Google Scholar 

  18. Liu W, Wang N, Luo T, Lin Z (2016) In-plane dynamic crushing of re-entrant auxetic cellular structure. Mater Des 100:84–91. https://doi.org/10.1016/j.matdes.2016.03.086

    Article  Google Scholar 

  19. Zhao X, Gao Q, Wang L, Yu Q, Ma ZD (2018) Dynamic crushing of double-arrowed auxetic structure under impact loading. Mater Des 160:527–537. https://doi.org/10.1016/j.matdes.2018.09.041

    Article  Google Scholar 

  20. Logakannan KP, Ramachandran V, Rengaswamy J (2020) Mechanics of materials dynamic performance of a 3D re-entrant structure. Mech Mater 148:103503. https://doi.org/10.1016/j.mechmat.2020.103503

    Article  Google Scholar 

  21. Mohammadiha O, Ghariblu H (2017) Crashworthiness study and optimisation of free inversion foam-filled tubes under dynamic loading. Int J Crashworthiness. https://doi.org/10.1080/13588265.2017.1368119

    Article  Google Scholar 

  22. Gibson, “The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. ® www.jstor.org,” 1982.

  23. Lakes R, Variability N, Physcss A, Meteorolgica W, Symposium O (1987) Lakes1987-1. Science 235(1987):1038–1041

    Article  Google Scholar 

  24. Mohsenizadeh S, Alipour R, Shokri Rad M, Farokhi Nejad A, Ahmad Z (2015) Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading. Mater Design 88:258–268. https://doi.org/10.1016/j.matdes.2015.08.152

    Article  Google Scholar 

  25. Ren X et al (2022) Mechanical properties of foam-filled auxetic circular tubes: experimental and numerical study. Thin-Walled Struct 170:108584. https://doi.org/10.1016/j.tws.2021.108584

    Article  Google Scholar 

  26. Guo MF, Yang H, Ma L (2020) Design and analysis of 2D double-U auxetic honeycombs. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2020.106915

    Article  Google Scholar 

  27. Wang XT, Wang B, Wen ZH, Ma L (2018) Fabrication and mechanical properties of CFRP composite three-dimensional double-arrow-head auxetic structures. Compos Sci Technol 164:92–102. https://doi.org/10.1016/j.compscitech.2018.05.014

    Article  Google Scholar 

  28. Gao Q, Liao WH, Wang L (2020) On the low-velocity impact responses of auxetic double arrowed honeycomb. Aerosp Sci Technol 98:105698. https://doi.org/10.1016/j.ast.2020.105698

    Article  Google Scholar 

  29. Novak N et al (2019) Crushing behavior of graded auxetic structures built from inverted tetrapods under impact. Phys Status Solidi (B) Basic Res 256(1):1–7. https://doi.org/10.1002/pssb.201800040

    Article  Google Scholar 

  30. Borovinšek M, Vesenjak M, Hokamoto K, Ren Z (2020) An experimental and computational study of the high-velocity impact of low-density aluminum foam. Materials 13(8):1949. https://doi.org/10.3390/ma13081949

    Article  Google Scholar 

  31. Luo C, Han CZ, Zhang XY, Zhang XG, Ren X, **e YM (2021) Design, manufacturing and applications of auxetic tubular structures: a review. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2021.107682

    Article  Google Scholar 

  32. Luo HC et al (2022) Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression. Compos Struct 280:114922. https://doi.org/10.1016/j.compstruct.2021.114922

    Article  Google Scholar 

  33. Aboutalebi FH, Poursina M, Nejatbakhsh H, Khataei M (2017) Numerical simulations and experimental validations of a proposed ductile damage model for DIN1623. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2017.12.041

    Article  Google Scholar 

  34. ASTM E8 (2010) ASTM E8/E8M standard test methods for tension testing of metallic materials 1,” Annual Book of ASTM Standards 4, no. C, pp. 1–27, https://doi.org/10.1520/E0008.

  35. Gama NV, Ferreira A, Barros-timmons A (2018) Polyurethane foams: past, present, and future. Materials. https://doi.org/10.3390/ma11101841

    Article  Google Scholar 

  36. Nateghi-Boroujeni I, Liaghat G, Ahmadi H (2019) Experimental study on the effect of pentanediol as a chain extender on the mechanical properties of mdi polyurethane foams. Iran J Polym Sci Technol 32(4):317–326. https://doi.org/10.22063/JIPST.2019.1679

    Article  Google Scholar 

  37. Nazari Z, Ahmadi H, Liaghat Gh, Vahid S (2022) Investigation on the compressive properties of auxetic foams under different loading rates. Polym Eng Sci. https://doi.org/10.1002/pen.25959

    Article  Google Scholar 

  38. F. O. R. Standardization and D. E. Normalisation (1987) International Standard Iso, vol. 1987

  39. Avalle M, Belingardi G, Montanini R (2001) Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. Int J Impact Eng 25:455–472. https://doi.org/10.1016/S0734-743X(00)00060-9

    Article  Google Scholar 

  40. Najafi M, Ahmadi H, Liaghat G (2021) Experimental investigation on energy absorption of auxetic structures. Mater Today Proc 34:350–355. https://doi.org/10.1016/j.matpr.2020.06.075

    Article  Google Scholar 

  41. Patidar D, Rana RS (2018) ScienceDirect The effect of CO2 laser cutting parameter on Mechanical & Microstructural characteristics of high strength steel-a review. Mater Today Proc 5(9):17753–17762. https://doi.org/10.1016/j.matpr.2018.06.099

    Article  Google Scholar 

  42. Scintilla LD, Palumbo G, Sorgente D, Tricarico L (2013) Fiber laser cutting of Ti6Al4V sheets for subsequent welding operations : Effect of cutting parameters on butt joints mechanical properties and strain behaviour. Mater Des 47:300–308. https://doi.org/10.1016/j.matdes.2012.12.014

    Article  Google Scholar 

  43. Guerra A, De Ciurana J (2017) ScienceDirect Fibre laser cutting of polymer tubes for stents manufacturing Fibre laser cutting polymer tubes for stents manufacturing Costing models capacity optimization Trade-off. Procedia Manuf 13:190–196. https://doi.org/10.1016/j.promfg.2017.09.038

    Article  Google Scholar 

  44. M. Learning and R. Cookbook, Shivdayal Rao, Abhijeet Sethi, Alok Kumar Das, Niladri Mandal, Kiran P, Rizul Ghosh, A.R. Dixit, A. Mandal. .

  45. Murugesan M, Jung D (2019) Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications. Materials 12(4):609. https://doi.org/10.3390/ma12040609

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Ahmadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doudaran, M.O., Ahmadi, H. & Liaghat, G. Crushing performance of auxetic tubes under quasi-static and impact loading. J Braz. Soc. Mech. Sci. Eng. 44, 230 (2022). https://doi.org/10.1007/s40430-022-03539-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03539-2

Keywords

Navigation