Log in

A bistable electromagnetic energy harvester for low-frequency, low-amplitude excitation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this work, we propose a bistable vibration energy harvester that can be used for non-resonant low-frequency, low-amplitude excitation. The design exploits magnetic bistability created between a pair of repelling magnets. Unlike base-excited beams, our design relies on placing one magnet on the tip of a cantilever beam having a fixed base, while transversely moving an opposite magnet thereby displacing the beam across its two stable positions with an amplified motion to harvest greater amounts of power by electromagnetic induction. A theoretical model is developed to simulate the dynamic behavior of the system at different excitation frequencies, amplitudes and magnetic gaps in order to assess the effect of the design parameters on the performance. It was found that the proposed design is beneficial and outperforms conventional linear oscillators for a broad range of frequencies, except at the linear resonance frequency. The results are supported experimentally over a range of load resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Excitation amplitude (mm)

AR:

Amplification ratio

B :

Magnetic flux density (T)

b :

Beam width (m)

[c]:

Dam** matrix (Ns/m)

{F}:

Total force vector (N)

f :

Excitation frequency (Hz)

F m :

Bistable force (N)

F em :

Electromagnetic dam** force (N)

h :

Beam thickness (m)

I :

Electric current (A)

[k]:

Stiffness matrix (N/m)

l :

Beam length (m)

l c :

Coil inductance (H)

l w :

Coil wire length (m)

[m]:

Mass matrix (kg)

R c :

Coil resistance (Ω)

R l :

Load resistance (Ω)

y :

External excitation (m)

[z]:

Nodal degrees of freedom

β :

Proportional dam** coefficient

ω :

Excitation frequency (rad/s)

δ :

Gap between magnets (m)

References

  1. Dinulovic D, Brooks M, Haug M, Petrovic T (2015) Rotational electromagnetic energy harvesting system. Phys Procedia 75:1244–1251

    Article  Google Scholar 

  2. Liu H, Zhang S, Kathiresan R, Kobayashi T, Lee C (2012) Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability. Appl Phys Lett 100(22):223905

    Article  Google Scholar 

  3. Qiu J, Chen H, Wen Y, Li P, Yang J, Li W (2014) A vibration energy harvester using magnet/piezoelectric composite transducer. J Appl Phys 115(17):17E522

    Article  Google Scholar 

  4. Abdelnaby MA, Arafa M (2016) Energy harvesting using a flextensional compliant mechanism. J Intell Mater Syst Struct 27(19):2707–2718

    Article  Google Scholar 

  5. Cao S, Li J (2017) A survey on ambient energy sources and harvesting methods for structural health monitoring applications. Adv Mech Eng 9(4):168781401769621

    Article  Google Scholar 

  6. Chew ZJ, Ruan T, Zhu M (2016) Strain energy harvesting powered wireless sensor node for aircraft structural health monitoring. Procedia Eng 168:1717–1720

    Article  Google Scholar 

  7. Sazonov E et al (2009) Self-powered sensors for monitoring of highway bridges. IEEE Sens J 9(11):1422–1429

    Article  Google Scholar 

  8. Bonessio N, Zappi P, Benzoni G, Simunic Rosing T, Lomiento G (2016) Structural health monitoring of bridges via energy harvesting sensor nodes. Open Mech Eng J 10(1):136–149

    Article  Google Scholar 

  9. Marinkovic B, Koser H (2012) Demonstration of wide bandwidth energy harvesting from vibrations. Smart Mater Struct 21(6):065006

    Article  Google Scholar 

  10. Louis Van Blarigan PD, Moehlis J (2012) A broadband vibrational energy harvester. Appl Phys Lett 100:253

    Google Scholar 

  11. Quinn DD et al (2011) Comparing linear and essentially nonlinear vibration-based energy harvesting. J Vib Acoust 133(1):011001

    Article  Google Scholar 

  12. Hajati A, Kim S-G (2011) Ultra-wide bandwidth piezoelectric energy harvesting. Appl Phys Lett 99(8):083105

    Article  Google Scholar 

  13. Leland ES, Wright PK (2006) Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater Struct 15(5):1413–1420

    Article  Google Scholar 

  14. Masana R, Daqaq MF (2011) Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J Vib Acoust 133(1):011007

    Article  Google Scholar 

  15. Eichhorn C, Tchagsim R, Wilhelm N, Woias B (2011) A smart and self-sufficient frequency tunable vibration energy harvester. J Micromech Microeng 21(10):104003

    Article  Google Scholar 

  16. Rhimi M, Lajnef N (2012) Passive temperature compensation in piezoelectric vibrators using shape memory alloy—induced axial loading. J Intell Mater Syst Struct 23(15):1759–1770

    Article  Google Scholar 

  17. Lallart M, Anton SR, Inman DJ (2010) Frequency self-tuning scheme for broadband vibration energy harvesting. J Intell Mater Syst Struct 21(9):897–906

    Article  Google Scholar 

  18. Zhang Y, Tang L, Liu K (2016) Piezoelectric energy harvesting with a nonlinear energy sink. J Intell Mater Syst Struct 28(3):307–322

    Article  Google Scholar 

  19. Amri M, Cottone F, Galayko D, Najar F, Bourouina T (2011) Novel nonlinear spring design for wideband vibration energy harvesters. In: PowerMEMS 2011, Seoul, Republic of Korea, 15–18 November 2011

  20. Samir A, Emam JH, Inman DJ (2017) Experimental study of nonlinear vibration energy harvesting of a bistable composite laminate. In: Proceedings of the ASME 2017 conference on smart materials, adaptive structures and intelligent systems, Snowbird, UT, USA

  21. Zhu D, Beeby SP (2013) A broadband electromagnetic energy harvester with a coupled bistable structure. J Phys Conf Ser 476:012070

    Article  Google Scholar 

  22. Stanton SC, McGehee CC, Mann BP (2010) Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D 239(10):640–653

    Article  Google Scholar 

  23. Andó B, Baglio S, Maiorca F, Trigona C (2012) Two dimensional bistable vibration energy harvester. Procedia Eng 47:1061–1064

    Article  Google Scholar 

  24. Harne RL, Thota M, Wang KW (2013) Bistable energy harvesting enhancement with an auxiliary linear oscillator. Smart Mater Struct 22(12):125028

    Article  Google Scholar 

  25. Harris P, Arafa M, Litak J, Bowen CR, Iwaniec J (2017) Output response identification in a multistable system for piezoelectric energy harvesting. Eur Phys J B 90(1):20

    Article  Google Scholar 

  26. Singh KA, Kumar R, Weber RJ (2015) A broadband bistable piezoelectric energy harvester with nonlinear high-power extraction. IEEE Trans Power Electron 30(12):6763–6774

    Article  Google Scholar 

  27. Pan D, Ma B, Dai F (2017) Experimental investigation of broadband energy harvesting of a bi-stable composite piezoelectric plate. Smart Mater Struct 26(3):035045

    Article  Google Scholar 

  28. Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22(2):023001

    Article  Google Scholar 

  29. Pellegrini SP, Tolou N, Schenk M, Herder JL (2012) Bistable vibration energy harvesters: a review. J Intell Mater Syst Struct 24(11):1303–1312

    Article  Google Scholar 

  30. Upadrashta D, Yang Y (2016) Nonlinear piezomagnetoelastic harvester array for broadband energy harvesting. J Appl Phys 120(5):054504

    Article  Google Scholar 

  31. Abdelkefi A, Barsallo N (2014) Comparative modeling of low-frequency piezomagnetoelastic energy harvesters. J Intell Mater Syst Struct 25(14):1771–1785

    Article  Google Scholar 

  32. Stanton SC, McGehee CC, Mann BP (2009) Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl Phys Lett 95(17):174103

    Article  Google Scholar 

  33. Wang G-Q, Liao WH (2016) A bistable piezoelectric oscillator with an elastic magnifier for energy harvesting enhancement. J Intell Mater Syst Struct 28(3):392–407

    Article  Google Scholar 

  34. Junyi C, Zhou S, Inman DJ, Lin J (2015) Nonlinear dynamic characteristics of variable inclination magnetically coupled piezoelectric energy harvesters. J Vib Acoust 137(2):9

    Google Scholar 

  35. Andò B, Baglio S, Trigona C, Dumas N, Latorre L, Nouet P (2010) Nonlinear mechanism in MEMS devices for energy harvesting applications. J Micromech Microeng 20:12

    Article  Google Scholar 

  36. Lin Ji-Tzuoh, Alphenaar Bruce (2010) Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever. J Intell Mater Syst Struct 21(1337):1341

    Google Scholar 

  37. Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94:254102-1–254102-3

    Article  Google Scholar 

  38. Ferrari M, Ferrari V, Guizzetti M, Marioli D (2010) Single-magnet nonlinear piezoelectric converter for enhanced energy harvesting from random vibrations. Procedia Eng 5:1156–1159

    Article  Google Scholar 

  39. Ferrari M, Ferrari V, Guizzettia M, Andòb B, Bagliob S, Trigonab C (2010) Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens Actuators A 162:425–431

    Article  Google Scholar 

  40. Poulin G, Sarraute E, Costa F (2004) Generation of electrical energy for portable devices: comparative study of an electromagnetic and a piezoelectric system. Sens Actuators A Phys 116:461–471

    Article  Google Scholar 

  41. K&J Magnetics, Magnetic field visualization. http://www.kjmagnetics.com. Accessed 22 July 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Ali Abdelnaby.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelnaby, M.A., Arafa, M. A bistable electromagnetic energy harvester for low-frequency, low-amplitude excitation. J Braz. Soc. Mech. Sci. Eng. 42, 520 (2020). https://doi.org/10.1007/s40430-020-02607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02607-9

Keywords

Navigation