Log in

A globally convergent improved BFGS method for generalized Nash equilibrium problems

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this article, we consider a class of Generalized Nash Equilibrium Problems (GNEPs) and solve it using one of the most effective quasi-Newton algorithms: the BFGS method. The considered GNEP is a player-convex GNEP. As the Armijo-type line search techniques are cost-effective in finding a step length, compared to Wolfe-type line search techniques, we use the Armijo–Goldstein line search technique in an improved BFGS method to solve GNEPs. In the BFGS method, the main drawback of using Armijo-type line search techniques is that it does not inherit the positive definiteness property of the generated Hessian approximation matrices. Therefore, we tactfully update approximate Hessian matrices so that the updated BFGS-matrices inherit the positive definiteness property. Accordingly, we prove its global convergence in the GNEP framework. The numerical performance of the proposed method is exhibited on three commonly used GNEPs and on two internet-switching GNEPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Not applicable.

Code Availability

Matlab codes of the proposed algorithms are openly available on the following GitHub repository: https://github.com/abhishek93056/Improved_BFGS_Method_for_GNEP.git

References

  1. Ahookhosh, M., Amini, K., Bahrami, S.: A class of nonmonotone Armijo-type line search method for unconstrained optimization. Optimization 61(4), 387–404 (2012)

    Article  MathSciNet  Google Scholar 

  2. Ardagna, D., Ciavotta, M., Passacantando, M.: Generalized Nash equilibria for the service provisioning problem in multi-cloud systems. IEEE Trans. Serv. Comput. 10(3), 381–395 (2015)

    Article  Google Scholar 

  3. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econ. J. Econ. Soc. 22(3), 265–290 (1954)

    MathSciNet  Google Scholar 

  4. Aussel, D., Sagratella, S.: Sufficient conditions to compute any solution of a quasivariational inequality via a variational inequality. Math. Methods Oper. Res. 85(1), 3–18 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bojari, S., Eslahchi, M.: Global convergence of a family of modified BFGS methods under a modified weak-Wolfe–Powell line search for nonconvex functions. 4OR 18(2), 219–244 (2020)

    Article  MathSciNet  Google Scholar 

  6. Breton, M., Zaccour, G., Zahaf, M.: A game-theoretic formulation of joint implementation of environmental projects. Eur. J. Oper. Res. 168(1), 221–239 (2006)

    Article  MathSciNet  Google Scholar 

  7. Broyden, C.G., Dennis, J.E., Jr., Moré, J.J.: On the local and superlinear convergence of quasi-Newton methods. IMA J. Appl. Math. 12(3), 223–245 (1973)

    Article  MathSciNet  Google Scholar 

  8. Byrd, R.H., Nocedal, J.: A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26(3), 727–739 (1989)

    Article  MathSciNet  Google Scholar 

  9. Cavazzuti, E., Pappalardo, M., Passacantando, M., et al.: Nash equilibria, variational inequalities, and dynamical systems. J. Optim. Theory Appl. 114(3), 491–506 (2002)

    Article  MathSciNet  Google Scholar 

  10. Chen, J.S., Sun, D., Sun, J.: The \({SC}^1\) property of the squared norm of the SOC Fischer–Burmeister function. Oper. Res. Lett. 36(3), 385–392 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cojocaru, M.G., Wild, E., Small, A.: On describing the solution sets of generalized Nash games with shared constraints. Optim. Eng. 19(4), 845–870 (2018)

    Article  MathSciNet  Google Scholar 

  12. Contreras, J., Klusch, M., Krawczyk, J.B.: Numerical solutions to Nash–Cournot equilibria in coupled constraint electricity markets. IEEE Trans. Power Syst. 19(1), 195–206 (2004)

    Article  Google Scholar 

  13. Contreras, J., Krawczyk, J.B., Zuccollo, J., García, J.: Competition of thermal electricity generators with coupled transmission and emission constraints. J. Energy Eng. 139(4), 239–252 (2013)

    Article  Google Scholar 

  14. Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. 38(10), 886–893 (1952)

    Article  MathSciNet  Google Scholar 

  15. Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28(126), 549–560 (1974)

    Article  MathSciNet  Google Scholar 

  16. Dennis, J.E., Jr., Moré, J.J.: Quasi-Newton methods, motivation and theory. SIAM Rev. 19(1), 46–89 (1977)

    Article  MathSciNet  Google Scholar 

  17. Downs, A.: An economic theory of political action in a democracy. J. Political Econ. 65(2), 135–150 (1957)

    Article  Google Scholar 

  18. Dreves, A.: Improved error bound and a hybrid method for generalized Nash equilibrium problems. Comput. Optim. Appl. 65(2), 431–448 (2016)

    Article  MathSciNet  Google Scholar 

  19. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5(3), 173–210 (2007)

    Article  MathSciNet  Google Scholar 

  20. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175(1), 177–211 (2010)

    Article  MathSciNet  Google Scholar 

  21. Facchinei, F., Pang, J.S.: Exact penalty functions for generalized Nash problems. In: Pillo, G.D., Roma, M. (eds) Large-Scale Nonlinear Optimization. Nonconvex Optimization and Its Applications, vol 83, pp. 115–126. Springer, Boston, MA (2006). https://doi.org/10.1007/0-387-30065-1_8

  22. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Science & Business Media, Berlin (2007)

    Google Scholar 

  23. Facchinei, F., Pang, J.S.: Nash equilibria: the variational approach. In: Convex optimization in signal processing and communications, pp. 443–490 (2010)

  24. Facchinei, F., Sagratella, S.: On the computation of all solutions of jointly convex generalized Nash equilibrium problems. Optim. Lett. 5(3), 531–547 (2011)

    Article  MathSciNet  Google Scholar 

  25. Facchinei, F., Fischer, A., Piccialli, V.: Generalized Nash equilibrium problems and Newton methods. Math. Program. 117(1–2), 163–194 (2009)

    Article  MathSciNet  Google Scholar 

  26. Facchinei, F., Piccialli, V., Sciandrone, M.: Decomposition algorithms for generalized potential games. Comput. Optim. Appl. 50(2), 237–262 (2011)

    Article  MathSciNet  Google Scholar 

  27. Facchinei, F., Kanzow, C., Karl, S., Sagratella, S.: The semismooth Newton method for the solution of quasi-variational inequalities. Comput. Optim. Appl. 62(1), 85–109 (2015)

    Article  MathSciNet  Google Scholar 

  28. Fischer, A., Jiang, H.: Merit functions for complementarity and related problems: a survey. Comput. Optim. Appl. 17(2), 159–182 (2000)

    Article  MathSciNet  Google Scholar 

  29. Fischer, A., Herrich, M., Schönefeld, K.: Generalized Nash equilibrium problems-recent advances and challenges. Pesqui. Oper. 34, 521–558 (2014)

    Article  Google Scholar 

  30. Fischer, A., Herrich, M., Izmailov, A.F., Solodov, M.V.: A globally convergent LP-Newton method. SIAM J. Optim. 26(4), 2012–2033 (2016)

    Article  MathSciNet  Google Scholar 

  31. Ghosh, D., Singh, A., Shukla, K.K., Manchanda, K.: Extended Karush-Kuhn-Tucker condition for constrained interval optimization problems and its application in support vector machines. Inf. Sci. 504, 276–292 (2019)

    Article  MathSciNet  Google Scholar 

  32. Ghosh, D., Sharma, A., Shukla, K.K., Kumar, A., Manchanda, K.: Globalized robust Markov perfect equilibrium for discounted stochastic games and its application on intrusion detection in wireless sensor networks: part I-theory. Jpn. J. Ind. Appl. Math. 37(1), 283–308 (2020)

    Article  MathSciNet  Google Scholar 

  33. Han, Z., Niyato, D., Saad, W., Başar, T., Hjørungnes, A.: Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  34. Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54(1), 81–94 (1991)

    Article  Google Scholar 

  35. Hobbs, B.F., Pang, J.S.: Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints. Oper. Res. 55(1), 113–127 (2007)

    Article  MathSciNet  Google Scholar 

  36. Izmailov, A.F., Solodov, M.V.: On error bounds and Newton-type methods for generalized Nash equilibrium problems. Comput. Optim. Appl. 59(1), 201–218 (2014)

    Article  MathSciNet  Google Scholar 

  37. **g-Yuan, W., Smeers, Y.: Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices. Oper. Res. 47(1), 102–112 (1999)

    Article  Google Scholar 

  38. Kesselman, A., Leonardi, S., Bonifaci, V.: Game-theoretic analysis of internet switching with selfish users. In: Deng, X., Ye, Y. (eds) Internet and Network Economics. WINE 2005. Lecture Notes in Computer Science, vol 3828, pp. 236–245. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11600930_23

  39. Li, D.H., Fukushima, M.: On the global convergence of the BFGS method for nonconvex unconstrained optimization problems. SIAM J. Optim. 11(4), 1054–1064 (2001)

    Article  MathSciNet  Google Scholar 

  40. Li, X., Wang, B., Hu, W.: A modified nonmonotone BFGS algorithm for unconstrained optimization. J. Inequal. Appl. 2017(1), 1–18 (2017)

    Article  MathSciNet  Google Scholar 

  41. Migot, T., Cojocaru, M.G.: Nonsmooth dynamics of generalized Nash games. J. Nonlinear Var. Anal. 1(4), 27–44 (2020)

    Google Scholar 

  42. Migot, T., Cojocaru, M.G.: A parametrized variational inequality approach to track the solution set of a generalized Nash equilibrium problem. Eur. J. Oper. Res. 283(3), 1136–1147 (2020)

    Article  MathSciNet  Google Scholar 

  43. Migot, T., Cojocaru, M.G.: A decomposition method for a class of convex generalized Nash equilibrium problems. Optim. Eng. 22(3), 1653–1679 (2021)

    Article  MathSciNet  Google Scholar 

  44. Nabetani, K., Tseng, P., Fukushima, M.: Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints. Comput. Optim. Appl. 48(3), 423–452 (2011)

    Article  MathSciNet  Google Scholar 

  45. Nash, J.F., Jr.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36(1), 48–49 (1950)

    Article  MathSciNet  Google Scholar 

  46. Nash, J.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  47. Nikaidô, H., Isoda, K.: Note on non-cooperative convex games. Pac. J. Math. 5(S1), 807–815 (1955)

    Article  MathSciNet  Google Scholar 

  48. Pang, J.S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 2(1), 21–56 (2005)

    Article  MathSciNet  Google Scholar 

  49. Pang, J.S., Tao, M.: Decomposition methods for computing directional stationary solutions of a class of nonsmooth nonconvex optimization problems. SIAM J. Optim. 28(2), 1640–1669 (2018)

    Article  MathSciNet  Google Scholar 

  50. Pang, J.S., Scutari, G., Facchinei, F., Wang, C.: Distributed power allocation with rate constraints in Gaussian parallel interference channels. IEEE Trans. Inf. Theory 54(8), 3471–3489 (2008)

    Article  MathSciNet  Google Scholar 

  51. Qu, B., Zhao, J.: Methods for solving generalized Nash equilibrium. J. Appl. Math. 2013, 762165 (2013). https://doi.org/10.1155/2013/762165

  52. Robinson, S.M.: Shadow prices for measures of effectiveness, I: linear model. Oper. Res. 41(3), 518–535 (1993)

    Article  MathSciNet  Google Scholar 

  53. Robinson, S.M.: Shadow prices for measures of effectiveness, II: general model. Oper. Res. 41(3), 536–548 (1993)

    Article  MathSciNet  Google Scholar 

  54. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave \(n\)-person games. Econometrica 33, 347–351 (1965)

    Article  MathSciNet  Google Scholar 

  55. Sagratella, S.: Computing all solutions of Nash equilibrium problems with discrete strategy sets. SIAM J. Optim. 26(4), 2190–2218 (2016)

    Article  MathSciNet  Google Scholar 

  56. Sagratella, S.: Computing equilibria of Cournot oligopoly models with mixed-integer quantities. Math. Methods Oper. Res. 86(3), 549–565 (2017)

    Article  MathSciNet  Google Scholar 

  57. Shi, Z., Wang, S.: Modified nonmonotone Armijo line search for descent method. Numer. Algorithms 57(1), 1–25 (2011)

    Article  MathSciNet  Google Scholar 

  58. Sun, W., Yuan, Y.X.: Optimization Theory and Methods: Nonlinear Programming, vol. 1. Springer Science & Business Media, Berlin (2006)

    Google Scholar 

  59. Wan, Z., Teo, K.L., Shen, X., Hu, C.: New BFGS method for unconstrained optimization problem based on modified Armijo line search. Optimization 63(2), 285–304 (2014)

    Article  MathSciNet  Google Scholar 

  60. Wei, Z., Yu, G., Yuan, G., Lian, Z.: The superlinear convergence of a modified BFGS-type method for unconstrained optimization. Comput. Optim. Appl. 29(3), 315–332 (2004)

    Article  MathSciNet  Google Scholar 

  61. Yuan, G., Wei, Z., Wu, Y.: Modified limited memory BFGS method with nonmonotone line search for unconstrained optimization. J. Korean Math. Soc. 47(4), 767–788 (2010)

    Article  MathSciNet  Google Scholar 

  62. Yuan, G., Wei, Z., Lu, X.: Global convergence of BFGS and PRP methods under a modified weak Wolfe–Powell line search. Appl. Math. Model. 47, 811–825 (2017)

    Article  MathSciNet  Google Scholar 

  63. Yuan, G., Sheng, Z., Wang, B., Hu, W., Li, C.: The global convergence of a modified BFGS method for nonconvex functions. J. Comput. Appl. Math. 327, 274–294 (2018)

    Article  MathSciNet  Google Scholar 

  64. Yang, T., Li, P., Wang, X.: Convergence analysis of an improved BFGS method and its application in the Muskingum model. Math. Probl. Eng. 2020, 4519274 (2020). https://doi.org/10.1155/2020/4519274

  65. Zhang, J., Deng, N., Chen, L.: New quasi-Newton equation and related methods for unconstrained optimization. J. Optim. Theory Appl. 102(1), 147–167 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are truly thankful to the editors and two anonymous reviewers for their comments that substantially enhanced the article from the earlier version. Debdas Ghosh sincerely thanks to the research fund MATRICS (MTR/2021/000696) by Science and Engineering Research Board, India, for carrying out this research work.

Funding

MATRICS-MTR/2021/000696 by SERB, India

Author information

Authors and Affiliations

Authors

Contributions

Equal contribution by both authors.

Corresponding author

Correspondence to Debdas Ghosh.

Ethics declarations

Conflict of interest

Not have any conflict of interest/competing interest with anyone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Ghosh, D. A globally convergent improved BFGS method for generalized Nash equilibrium problems. SeMA 81, 235–261 (2024). https://doi.org/10.1007/s40324-023-00323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-023-00323-7

Keywords

Mathematics Subject Classification

Navigation