Log in

Convergence Rates of Exceptional Zeros of Exceptional Orthogonal Polynomials

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We consider the zeros of exceptional orthogonal polynomials (XOP). Exceptional orthogonal polynomials were originally discovered as eigenfunctions of second order differential operators that exist outside the classical Bochner–Brenke classification due to the fact that XOP sequences omit polynomials of certain degrees. This omission causes several properties of the classical orthogonal polynomial sequences to not extend to the XOP sequences. One such property is the restriction of the zeros to the convex hull of the support of the measure of orthogonality. In the XOP case, the zeros that exist outside the classical intervals are called exceptional zeros and they often converge toward easily identifiable limit points as the degree becomes large. We deduce the exact rate of convergence and verify that certain estimates that previously appeared in the literature are sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Beardon, A.F., Driver, K.A.: The zeros of linear combinations of orthogonal polynomials. J. Approx. Theory 137(2), 179–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonneux, N.: Exceptional Jacobi polynomials. J. Approx. Theory 239(2), 72–112 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonneux, N., Kuijlaars, A.: Exceptional Laguerre polynomials. Stud. Appl. Math. 141(4), 547–595 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chou, C.I., Ho, C.L.: Generalized Rayleigh and Jacobi processes and exceptional orthogonal polynomials. Int. J. Mod. Phys. B 27(24), 1350135 (2013)

  5. Deano, A., Huertas, E.J., Marcellan, F.: Strong and ratio asymptotics for Laguerre polynomials revisited. J. Math. Anal. Appl. 403(2), 477–486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dimitrov, D.K., Lun, Y.C.: Monotonicity, interlacing and electrostatic interpretation of zeros of exceptional Jacobi polynomials. J. Approx. Theory 181, 18–29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Durán, A.: Exceptional Charlier and Hermite orthogonal polynomials. J. Approx. Theory 182, 29–58 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Durán, A.: Exceptional Meixner and Laguerre orthogonal polynomials. J. Approx. Theory 184, 176–208 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Durán, A.: Constructing bispectral dual Hahn polynomials. J. Approx. Theory 189, 1–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Durán, A.: Exceptional Hahn and Jacobi orthogonal polynomials. J. Approx. Theory 214, 9–48 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Durán, A., Pérez, M.: Admissibility condition for exceptional Laguerre polynomials. J. Math. Anal. Appl. 424, 1042–1053 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dutta, D., Roy, P.: Conditionally exactly solvable potentials and exceptional orthogonal polynomials. J. Math. Phys. 51(4), 042101 (2010)

  13. Felder, G., Hemery, A.D., Veselov, A.P.: Zeros of Wronskians of Hermite polynomials and Young diagrams. Physica D 241(23–24), 2131–2137 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garcia-Ferrero, M., Gomez-Ullate, D., Milson, R.: A Bochner type characterization theorem for exceptional orthogonal polynomials. J. Math. Anal. Appl. 472(1), 584–626 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garcia-Ferrero, M., Gomez-Ullate, D., Milson, R.: Exceptional Legendre Polynomials and Confluent Darboux Transformations, SIGMA Symmetry Integrability Geom. Methods Appl., vol. 17, paper no. 016 (2021)

  16. Gatteschi, L.: Asymptotics and bounds for the zeros of Laguerre polynomials: a survey. J. Comput. Appl. Math. 144(1–2), 7–27 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gomez-Ullate, D., Grandati, Y., Milson, R.: Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials. J. Phys. A 47, 015203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gomez-Ullate, D., Kamran, N., Milson, R.: An extended class of orthogonal polynomials defined by a Sturm–Liouville problem. J. Math. Anal. Appl. 359, 352–367 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gomez-Ullate, D., Kasman, A., Kuijlaars, A.B.J., Milson, R.: Recurrence relations for exceptional Hermite polynomials. J. Approx. Theory 204, 1–16 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gomez-Ullate, D., Marcellan, F., Milson, R.: Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials. J. Math. Anal. Appl. 399(2), 480–495 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grosu, C., Grosu, C.: The irreducibility of some Wronskian Hermite polynomials. Indag. Math. (N.S.) 32(2), 456–497 (2021)

  22. Ho, C.L., Sasaki, R.: Zeros of the exceptional Laguerre and Jacobi polynomials, International Scholarly Research Notices: Mathematical Physics, vol. 2012 (2012)

  23. Hoffman, S., Hussin, V., Marquette, I., Zhang, Y.-Z.: Coherent states for ladder operators of general order related to exceptional orthogonal polynomials. J. Phys. A 51(31), 315203 (2018)

  24. Hoque, M., Marquette, I., Post, S., Zhang, Y.-Z.: Algebraic calculations for spectrum of superintegrable system from exceptional orthogonal polynomials. Ann. Phys. 391, 203–215 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Horvath, A.P.: The electrostatic properties of zeros of exceptional Laguerre and Jacobi polynomials and stable interpolation. J. Approx. Theory 194, 87–107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Horvath, A.P.: The energy function with respect to the zeros of the exceptional Hermite polynomials. Acta Math. Sci. Ser. B (Engl. Ed.) 37(5), 1483–1496 (2017)

  27. Horvath, A.P.: Translation operator with exceptional Laguerre polynomials, arxiv preprint ar**v:1803.05516

  28. Kasman, A., Milson, R.: The Adelic Grassmannian and exceptional Hermite polynomials. Math. Phys. Anal. Geom. 23(4), (2020)

  29. Kuijlaars, A.B.J., Martinez-Finkelshtein, A., Orive, R.: Orthogonality of Jacobi polynomials with general parameters. Electron. Trans. Numer. Anal. 19, 1–17 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Kuijlaars, A.B.J., Milson, R.: Zeros of exceptional Hermite polynomials. J. Approx. Theory 200, 28–39 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liaw, C., Littlejohn, L., Stewart, J.: Spectral analysis for the exceptional \(X_m\) Jacobi equation. Electron. J. Differ. Equ. 2015(194), 1–10 (2015)

    MATH  Google Scholar 

  32. Liaw, C., Littlejohn, L., Milson, R., Stewart, J.: The spectral analysis of three families of exceptional Laguerre polynomials. J. Approx. Theory 202, 5–41 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lun, Y.C.: Behavior of zeros of \(X_1\)-Jacobi and \(X_1\)-Laguerre exceptional orthogonal polynomials, arxiv preprint ar**v:1807.00034

  34. Marquette, I., Quesne, C.: New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials. J. Math. Phys. 54(4), 042102 (2013)

  35. Midya, B.: Quasi-Hermitian Hamiltonians associated with exceptional orthogonal polynomials. Phys. Lett. A 376(45), 2851–2854 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Midya, B., Roy, B.: Exceptional orthogonal polynomials and exactly solvable potentials in position dependent mass Schrödinger Hamiltonians. Phys. Lett. A 373(45), 4117–4122 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Odake, S., Sasaki, R.: Another set of infinitely many exceptional \(X_\ell \) Laguerre polynomials. Phys. Lett. B 684, 414–417 (2009)

    Article  MathSciNet  Google Scholar 

  38. Quesne, C.: Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry. J. Phys. A 41(39), 392001 (2008)

  39. Quesne, C.: Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials. Mod. Phys. Lett. A 26(25), 1843–1852 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schulze-Halberg, A., Roy, P.: Quantum models with energy-dependent potentials solvable in terms of exceptional orthogonal polynomials. Ann. Phys. 378, 234–252 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Simon, B.: A Comprehensive Course in Analysis, Part 4: Operator Theory. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  42. Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium Publications, vol. XXIII. American Mathematical Society, Providence (1975)

Download references

Acknowledgements

The author is grateful to the anonymous referee for many useful suggestions.

Funding

The author gratefully acknowledges support from the Simons Foundation through collaboration grant 707882.

Author information

Authors and Affiliations

Authors

Contributions

All research for this paper was done by the author.

Corresponding author

Correspondence to Brian Simanek.

Ethics declarations

Conflict of interest

The author has no conflicts of interest to disclose.

Additional information

Communicated by Laurent Baratchart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simanek, B. Convergence Rates of Exceptional Zeros of Exceptional Orthogonal Polynomials. Comput. Methods Funct. Theory 23, 629–649 (2023). https://doi.org/10.1007/s40315-022-00459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-022-00459-z

Keywords

Mathematics Subject Classification

Navigation