Log in

Extremal Geometric Measure of Entanglement and Riemannian Optimization Methods

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

In this paper, we study the extremal geometric measure of quantum entanglement of superposition states of several symmetric pure states with parameters. This problem is equivalent to calculate their minimum entanglement value or maximum entanglement value. We propose the block coordinate descent (BCD) method to calculate the minimum entanglement value and establish its convergence analysis. We propose a gradient projection ascent with min-oracle(GPAM) method to calculate the maximum entanglement value. The subproblems of these two problems are optimization problems with a complex unit spherical constraint. The complex unit sphere is a Riemannian manifold. We propose an inexact Riemannian Newton-CG method to solve this Riemannian optimization problem. The numerical examples are presented to demonstrate the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lo, H.K., Popescu, S., Spiller, T.: Introduction to Quantum Computation and Information. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 696–702 (1935)

    Article  MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., et al.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hamma, A., Santra, S., Zanardi, P.: Quantum entanglement in random physical states. Phys. Rev. Lett. 109(4), 040502 (2012)

    Article  Google Scholar 

  5. Cleve, R., Van Dam, W., Nielsen, M., et al.: Quantum entanglement and the communication complexity of the inner product function. Nash International Conference on Quantum Computing and Quantum Communications 1509, 61–74 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rossi, M., Bru\(\mathfrak{B}\) D., Macchiavello, C.: Scale invariance of entanglement dynamics in Grover’s quantum search algorithm. Phys. Rev. A 87(2), 022331 (2013)

  7. Han, D., Qi, L.: A successive approximation method for quantum separability. Front. Math. China 8(6), 1275–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shimony, A.: Degree of entanglement. Ann. N. Y. Acad. Sci. 755(1), 675–679 (1995)

    Article  MathSciNet  Google Scholar 

  9. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68(4), 4343–4349 (2003)

    Article  Google Scholar 

  10. Hu, S., Qi, L., Zhang, G.: The geometric measure of entanglement of pure states with nonnegative amplitudes and the spectral theory of nonnegative tensors. (2012) https://arxiv.org/pdf/1203.3675.pdf

  11. Ni, G., Qi, L., Bai, M.: Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35(1), 73–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ni, G., Bai, M.: Spherical optimization with complex variablesfor computing US-eigenpairs. Comput. Optim. Appl. 65(3), 799–820 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hayashi, M., Markham, D., Murao, M., et al.: The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes. J. Math. Phys. 50(12), 122104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Qi, L.: The Minimum hartree value for the quantum entanglement problem (2012) https://arxiv.org/pdf/1202.2983.pdf

  15. Zhang, X., Qi, L.: The quantum eigenvalue problem and Z-eigenvalues of tensors. Mathematics (2012)

  16. Fu, T., Jiang, B., Li, Z.: On decompositions and approximations of conjugate partial-symmetric complex tensors. Calcolo 58 (2021)

  17. Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35(3), 1155–1179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Che, M., Cichocki, A., Wei, Y.: Neural networks for computing best rank-one approximations of tensors and its applications. Neurocomputing 267, 114–133 (2017)

    Article  Google Scholar 

  19. Hua, B., Ni, G.Y., Zhang, M.S.: Computing geometric measure of entanglement for symmetric pure states via the Jacobian SDP relaxation technique. J. Oper. Res. Soc. China 5(1), 111–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Che, M., Qi, L., Wei, Y.: Iterative algorithms for computing US-and U-eigenpairs of complex tensors. J. Comput. Appl. Math. 317, 547–564 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bai, M., Zhao, J., Zhang, Z.H.: A descent cautious BFGS method for computing US-eigenvalues of symmetric complex tensors. J. Glob. Optim. 76(4), 889–911 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sorber, L., Barel, M.V., Lathauwer, L.D.: Unconstrained optimization of real functions in complex variables. SIAM J. Optim. 22(3), 879–898 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiang, B., Li, Z., Zhang, S.: Approximation methods for complex polynomial optimization. Comput. Optim. Appl. 59(1–2), 219–248 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Remmert, R.: Theory of complex functions. Graduate in Texts Mathematics 122(4), 379–399 (1991)

    MathSciNet  Google Scholar 

  25. Kreutz-Delgado, K.: The complex gradient operator and the CR-calculus, Mathematics (2009) https://arxiv.org/pdf/0906.4835.pdf

  26. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, N.J. (2008)

    Book  MATH  Google Scholar 

  27. Absil, P.-A., Bake, C.G., Gallivan, K.A.: Trust-Region Methods on Riemannian Manifolds. Found. Comput. Math. 7(3), 303–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu, J., Milzarek, A., Wen, Z., Yuan, Y.: Adaptive regularized Newton method for Riemannian optimization. SIAM J. Matrix Anal. Appl. 39(3), 1181–1207 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhao, X., Bai, M., Ng, M.K.: Nonconvex optimization for robust tensor completion from Grossly sparse observations. J. Sci. Comput. 85, 46 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qiu, D., Bai, M., Ng, M.K.: Zhang X, Nonlocal robust tensor recovery with nonconvex regularization. Inverse Probl. 37 (2021)

  31. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Springer Verlag, Berlin (2009)

    MATH  Google Scholar 

  32. Clarke, F.H.: Optimization and Nonsmooth Analysis, 2nd edn. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  33. Xu, Z., Zhang, H., Xu, Y., et al.: A Unified Single-loop Alternating Gradient Projection Algorithm for Nonconvex-Concave and Convex-Nonconcave Minimax Problems. Math. Program. 201, 635–706 (2023)

  34. **, C., Netrapalli, P., Jordan, M.I.: What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization? In: Proceedings of the 37th International Conference on Machine Learning (ICML’20), JMLR.org, Article 453, pp. 4880–4889 (2020)

  35. Huang, W., Absil, P.-A., Gallivan, K.A., Hand, P.: ROPTLIB: an object-oriented C++ library for optimization on Riemannian manifolds. ACM Trans. Math. Softw. 44(4), 43 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.-R. Bai is in charge of conceptualization, methodology, supervision and the correctness of the paper. Q. Zeng is in charge of model and algorithm design and analysis of extremal geometric measure of entanglement and paper writing. S.-S. Yan is in charge of the algorithm and theory of Riemannian optimization subproblem.

Corresponding author

Correspondence to Min-Ru Bai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11971159 and 12071399).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, MR., Yan, SS. & Zeng, Q. Extremal Geometric Measure of Entanglement and Riemannian Optimization Methods. J. Oper. Res. Soc. China (2023). https://doi.org/10.1007/s40305-023-00504-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40305-023-00504-1

Keywords

Mathematics Subject Classification

Navigation