Log in

Tumbling Small Body Spin State Estimation Using Independently Simulated Images

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Future missions to asteroids and comets will likely encounter bodies which are tumbling (i.e., not in principal axis rotation), and which have poor or non-existent prior shape models. In this work, simulated images of a tumbling comet are processed by a sequential Extended Kalman Filter (EKF) Simultaneous Localization and Map** (SLAM) method and a novel approach is employed to generate initial landmark positions without a detailed shape model. The a priori landmark position method uses a subset of manually identified surface landmarks, and the full set of landmark observations are then employed by the EKF SLAM to estimate the small body spin state and scaled moments of inertia; the spacecraft position and velocity (the spacecraft attitude is provided by an independent attitude determination system); and the final surface landmark locations. An interpolation method for the provided spacecraft attitude values is also provided. The initial landmark generation and SLAM method is successful in estimating the spin state of the simulated body, with final smoothed error magnitudes lower than 1 degree for the small body orientation and 2 degrees per day for the small body angular velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Scheeres, D.: Orbital motion in strongly perturbed environments. Springer (2012). https://doi.org/10.1007/978-3-642-03256-1

  2. Konopliv, A., Park, R., Vaughan, A., Bills, B., Asmar, S., Ermakov, A., Rambaux, N., Raymond, C., Castillo-Rogez, J., Russell, C., Smith, D., Zuber, M.: The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. Icarus 299, 411–429 (2018). https://doi.org/10.1016/j.icarus.2017.08.005

    Article  Google Scholar 

  3. Miller, J., Konopliv, A., Antreasian, P., Bordi, J., Chesley, S., Helfrich, C., Owen, W., Wang, T., Williams, B., Yeomans, D., et al.: Determination of shape, gravity, and rotational state of asteroid 433 Eros. Icarus 155(1), 3–17 (2002). https://doi.org/10.1006/icar.2001.6753

    Article  Google Scholar 

  4. Godard, B., Budnik, F., Bellei, G., Muñoz, P., Morley, T.: Multi-arc orbit determination to determine Rosetta trajectory and 67P physical parameters. In: Proceedings 26th International Symposium on Space Flight Dynamics–26th ISSFD, Matsuyama, Japan (2017)

  5. Christian, J.A., Derksen, H., Watkins, R.: Lunar crater identification in digital images. J. Astronaut. Sci. 68, 1056–1144 (2021). https://doi.org/10.1007/s40295-021-00287-8

    Article  Google Scholar 

  6. Olson, C., Russell, R., Bhaskaran, S.: Spin state estimation of tumbling small bodies. J. Astronaut. Sci. (2016). https://doi.org/10.1007/s40295-015-0080-y

  7. Karlgaard, C., Schaub, H.: Nonsingular attitude filtering using modified rodrigues parameters. J. Astronaut. Sci. 57(4), 777–791 (2009). https://doi.org/10.1007/bf03321529

    Article  Google Scholar 

  8. Takeishi, N., Yairi, T., Tsuda, Y., Terui, F., Ogawa, N., Mimasu, Y.: Simultaneous estimation of shape and motion of an asteroid for automatic navigation. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2861–2866 (2015). https://doi.org/10.1109/ICRA.2015.7139589

  9. Dor, M., Skinner, K.A., Tsiotras, P., Driver, T.: Visual SLAM for asteroid relative navigation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2066–2075 (2021). https://doi.org/10.1109/CVPRW53098.2021.00235

  10. Koschny, D., Solaz, R., Vallat, C.: Rosetta project glossary. RO-EST-LI-5012 (2007)

  11. Russell, C., et al.: Dawn mission to Vesta and Ceres. Earth Moon Planet. 101(1–2), 65–91 (2007). https://doi.org/10.1007/s11038-007-9151-9

    Article  Google Scholar 

  12. Hawkins, S., III.: Overview of the multi-spectral imager on the NEAR spacecraft. Acta Astronaut. 39(1), 265–271 (1996). https://doi.org/10.1016/s0094-5765(96)00144-0

    Article  Google Scholar 

  13. Ishiguro, M., et al.: The hayabusa spacecraft asteroid multi-band imaging camera (AMICA). Icarus 207(2), 714–731 (2010). https://doi.org/10.1016/j.icarus.2009.12.035

    Article  MathSciNet  Google Scholar 

  14. Bhaskaran, S., Nandi, S., Broschart, S., Wallace, M., Cangahuala, L., Olson, C.: Small body landings using autonomous onboard optical navigation. J. Astronaut. Sci. 58(3), 409–427 (2011). https://doi.org/10.1007/bf03321177

    Article  Google Scholar 

  15. Bektaş, S.: Shortest distance from a point to triaxial ellipsoid. Int. J. Eng. 4(11), 8269 (2014)

    Google Scholar 

  16. Sheinfeld, D., Rock, S.: Rigid body inertia estimation with applications to the capture of a tumbling satellite. In: 19th AAS/AIAA Space Flight Mechanics Meeting. AAS 09-123 (2009)

  17. Crassidis, J., Markley, F.: Attitude estimation using modified Rodrigues parameters. Flight Mechanics/Estimation Theory Symposium (1996)

  18. Archinal, B., A’Hearn, M., Bowell, E., Conrad, A., Consolmagno, G., Courtin, R., Fukushima, T., Hestroffer, D., Hilton, J., Krasinsky, G., et al.: Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest. Mech. Dyn. Astron. 109(2), 101–135 (2011). https://doi.org/10.1007/s10569-010-9320-4

    Article  Google Scholar 

  19. Tapley, B., Schutz, B., Born, G.: Statistical orbit determination. Elsevier Academic Press (2004)

  20. Simon, D.: Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons (2006)

  21. Bar-Shalom, Y., Li, X., Kirubarajan, T.: Estimation with applications to tracking and navigation: theory algorithms and software. John Wiley & Sons (2004)

  22. Woodburn, J., Carrico, J., Wright, J.: Estimation of instantaneous maneuvers using a fixed interval smoother. In: de Lafontaine, J. et al. (eds.) AAS/AIAA Astrodynamics Conference 2003. Advances in the Astronautical Sciences, vol. 116, pp. 243–260. Univelt, San Diego (2003)

    Google Scholar 

  23. Glassmeier, K., Boehnhardt, H., Koschny, D., Kührt, E., Richter, I.: The Rosetta mission: flying towards the origin of the solar system. Space Sci. Rev. 128(1–4), 1–21 (2007). https://doi.org/10.1007/s11214-006-9140-8

    Article  Google Scholar 

  24. Landi, A., Boldrini, F., Procopio, D.: Mars Express and Rosetta autonomous STR in flight experience. In: 6th International Conference on Guidance, Navigation & Control Systems. ESA Special Publications, vol. SP-606, id. 55 (2006)

    Google Scholar 

  25. Wokes, D., Essert, J.: Development of Rosetta initial stage comet rendezvous guidance systems. In: AIAA/AAS Astrodynamics Specialist Conference (2012). https://doi.org/10.2514/6.2012-5061

Download references

Acknowledgements

The work described in this paper was funded by NASA’s Chief Technology Office through a NASA Space Technology Research Fellowship. The authors would like to acknowledge the Rosetta Flight Dynamics team at ESOC for providing the simulated images and scenario used for our analysis. The authors also thank the organizers of the 1st Annual RPI Workshop on Image-Based Modeling and Navigation for Space Applications. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corwin Olson.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olson, C., Russell, R.P. & Bhaskaran, S. Tumbling Small Body Spin State Estimation Using Independently Simulated Images. J Astronaut Sci 69, 51–76 (2022). https://doi.org/10.1007/s40295-022-00312-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00312-4

Keywords

Navigation