Log in

Drug Repurposing for Spinal Cord Injury: Progress Towards Therapeutic Intervention for Primary Factors and Secondary Complications

  • Review Article
  • Published:
Pharmaceutical Medicine Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) encompasses a plethora of complex mechanisms like the involvement of major cell death pathways, neurodegeneration of spinal cord neurons, overexpression of glutaminergic transmission and inflammation cascade, along with different co-morbidities like neuropathic pain, urinary and sexual dysfunction, respiratory and cardiac failures, making it one of the leading causes of morbidity and mortality globally. Corticosteroids such as methylprednisolone and dexamethasone, and non-steroidal anti-inflammatory drugs such as naproxen, aspirin and ibuprofen are the first-line treatment options for SCI, inhibiting primary and secondary progression by preventing inflammation and action of reactive oxygen species. However, they are constrained by a short effective drug administration window and their pharmacological action being limited to symptomatic relief of the secondary effects related to spinal cord injury only. Although post-injury rehabilitation treatments may enable functional recovery, they take a long time to show results. Drug repurposing might be an innovative method for expanding therapy alternatives, utilising drugs that are already approved by various esteemed federal agencies throughout the world. Reutilising a drug molecule to treat SCI can eliminate the need for expensive and lengthy drug discovery processes and pave the way for new therapeutic approaches in SCI. This review summarises marketed drugs that could be repurposed based on their safety and efficacy data. We also discuss their mechanisms of action and provide a list of repurposed drugs under clinical trials for SCI therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Perrouin-Verbe B, Lefevre C, Kieny P, Gross R, Reiss B, Le Fort M. Spinal cord injury: A multisystem physiological impairment/dysfunction. Revue neurologique 2021;177(5):594–605.

  2. Anjum A, Yazid MDi, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020;21(20):7533.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Failli V, Kleitman N, Lammertse DP, Hsieh JTC, Steeves JD, Fawcett JW, et al. Experimental treatments for spinal cord injury: what you should know. Top Spinal Cord Injury Rehabil. 2021;27(2):50–74.

    Google Scholar 

  4. Donovan J, Kirshblum S. Clinical trials in traumatic spinal cord injury. Neurotherapeutics. 2018;15(3):654–68.

    PubMed  PubMed Central  Google Scholar 

  5. Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamaguchi S, Kaneko M, Narukawa M. Approval success rates of drug candidates based on target, action, modality, application, and their combinations. Clin Transl Sci. 2021;14(3):1113–22.

    PubMed  PubMed Central  Google Scholar 

  7. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung Y-C, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080–97.

    PubMed  Google Scholar 

  8. Mithun R, Shubham JK, Anil GJ. Drug Repurposing (DR): An Emerging Approach in Drug Discovery. In: Farid AB, editor. Drug Repurposing. IntechOpen: Rijeka; 2020. p Ch. 1.

  9. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discovery. 2019;18(1):41–58.

    CAS  PubMed  Google Scholar 

  10. De Rycker M, Baragaña B, Duce SL, Gilbert IH. Challenges and recent progress in drug discovery for tropical diseases. Nature. 2018;559(7715):498–506.

    PubMed  PubMed Central  Google Scholar 

  11. Lee HM, Kim Y. Drug repurposing is a new opportunity for develo** drugs against neuropsychiatric disorders. Schizophr Res Treat. 2016;2016:6378137.

    Google Scholar 

  12. Yu CG, Bondada V, Ghoshal S, Singh R, Pistilli CK, Dayaram K, et al. Repositioning flubendazole for spinal cord injury. J Neurotrauma. 2019;36(18):2618–30.

    PubMed  PubMed Central  Google Scholar 

  13. Srinivas S, Wali AR, Pham MH. Efficacy of riluzole in the treatment of spinal cord injury: a systematic review of the literature. Neurosurg Focus. 2019;46(3):E6.

    PubMed  Google Scholar 

  14. Ahmed Z, Tuxworth RI. The brain-penetrant ATM inhibitor, AZD1390, promotes axon regeneration and functional recovery in preclinical models of spinal cord injury. Clin Transl Med. 2022;12(7): e962.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ahmed Z, Alhajlah S, Thompson AM, Fairclough RJ. Clinic-ready inhibitor of MMP-9/-12 restores sensory and functional decline in rodent models of spinal cord injury. Clin Transl Med. 2022;12(5): e884.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Talevi A, Bellera CL. Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin Drug Discov. 2020;15(4):397-401.

  17. Roessler HI, Knoers N, van Haelst MM, van Haaften G. Drug repurposing for rare diseases. Trends Pharmacol Sci. 2021;42(4):255–67.

    CAS  PubMed  Google Scholar 

  18. Wang Z, Yang B. Polypharmacology in old drug rediscovery: drug repurposing. Polypharmacology: principles and methodologies. Cham: Springer International Publishing; 2022. p. 535–92.

    Google Scholar 

  19. Xue H, Li J, **e H, Wang Y. Review of drug repositioning approaches and resources. Int J Biol Sci. 2018;14(10):1232–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Holbein ME. Understanding FDA regulatory requirements for investigational new drug applications for sponsor-investigators. J Investig Med. 2009;57(6):688–94.

    PubMed  PubMed Central  Google Scholar 

  21. Yao B, Zhu L, Jiang Q, **a HA. Safety monitoring in clinical trials. Pharmaceutics. 2013;5(1):94–106.

    PubMed  PubMed Central  Google Scholar 

  22. Nahler G, Nahler GJDoPM. New drug application (NDA). 2009; p. 121.

  23. Kepplinger EE. FDA’s expedited approval mechanisms for new drug products. Biotechnol Law Rep. 2015;34(1):15–37.

    PubMed  PubMed Central  Google Scholar 

  24. Bellera CL, Di Ianni ME, Sbaraglini ML, Castro EA, Bruno-Blanch LE, Talevi A. Knowledge-based drug repurposing: a rational approach towards the identification of novel medical applications of known drugs. Frontiers in computational chemistry. 2015; p. 44–81.

  25. Parvathaneni V, Kulkarni NS, Muth A, Gupta V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today. 2019;24(10):2076–85.

    CAS  PubMed  Google Scholar 

  26. Miteva MA, Villoutreix BO. Computational biology and chemistry in MTi: emphasis on the prediction of some ADMET properties. Mol Inf. 2017;36(10):1700008.

    Google Scholar 

  27. Spreafico R, Soriaga LB, Grosse J, Virgin HW, Telenti A. Advances in genomics for drug development. Genes. 2020;11(8):942.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2017;45(D1):D271–81.

  29. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 2019;10, 282.

  30. Chen Y, Tang Y, Vogel LC, Devivo MJ. Causes of spinal cord injury. Top Spinal Cord Inj Rehabil. 2013;19(1):1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci. 2016;10:98.

    PubMed  PubMed Central  Google Scholar 

  32. Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X, et al. Microenvironment imbalance of spinal cord injury. Cell Transplant. 2018;27(6):853–66.

    PubMed  PubMed Central  Google Scholar 

  33. Zhu Y, Huang Y, Ji Q, Fu S, Gu J, Tai N, Wang X. Interplay between Extracellular Matrix and Neutrophils in Diseases. J Immunol Res. 2021, 2021, 8243378.

  34. Guha L, Singh N, Kumar H. Different ways to die: cell death pathways and their association with spinal cord injury. Neurospine. 2023;20(2):430–48.

    PubMed  PubMed Central  Google Scholar 

  35. Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009;30(4):379–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mark LP, Prost RW, Ulmer JL, Smith MM, Daniels DL, Strottmann JM, et al. Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am J Neuroradiol. 2001;22(10):1813–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kisucká A, Bimbová K, Bačová M, Gálik J, Lukáčová N. Activation of neuroprotective microglia and astrocytes at the lesion site and in the adjacent segments is crucial for spontaneous locomotor recovery after spinal cord injury. Cells. 2021;10(8):1943.

    PubMed  PubMed Central  Google Scholar 

  38. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;10:282.

    PubMed  PubMed Central  Google Scholar 

  39. Cooke P, Janowitz H, Dougherty SE. Neuronal redevelopment and the regeneration of neuromodulatory axons in the adult mammalian central nervous system. Front Cell Neurosci. 2022;16: 872501.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Teasell RW, Mehta S, Aubut JA, Foulon B, Wolfe DL, Hsieh JT, et al. A systematic review of pharmacologic treatments of pain after spinal cord injury. Arch Phys Med Rehabil. 2010;91(5):816–31.

    PubMed  PubMed Central  Google Scholar 

  41. Clout AE, Della Pasqua O, Hanna MG, Orlu M, Pitceathly RDS. Drug repurposing in neurological diseases: an integrated approach to reduce trial and error. J Neurol Neurosurg Psychiatr. 2019;90(11):1270–1275.

  42. Gresham G, Meinert JL, Gresham AG, Piantadosi S, Meinert CL. Update on the clinical trial landscape: analysis of ClinicalTrials.gov registration data, 2000–2020. Trials. 2022;23(1):858.

    PubMed  PubMed Central  Google Scholar 

  43. Goldenberg MM. Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. P & T a Peer-Review J Formul Manag. 2010;35(7):392–415.

    Google Scholar 

  44. Jha M, Alam O, Naim MJ, Sharma V, Bhatia P, Sheikh AA, et al. Recent advancement in the discovery and development of anti-epileptic biomolecules: an insight into structure activity relationship and Docking. Eur J Pharm Sci. 2020;153: 105494.

    CAS  PubMed  Google Scholar 

  45. Sobol E, Bialer M, Yagen B. Tetramethylcyclopropyl analogue of a leading antiepileptic drug, valproic acid. Synthesis and evaluation of anticonvulsant activity of its amide derivatives. J Med Chem. 2004;47(17):4316–26.

    CAS  PubMed  Google Scholar 

  46. Bialer M. How did phenobarbital’s chemical structure affect the development of subsequent antiepileptic drugs (AEDs)? Epilepsia. 2012;53:3–11.

    CAS  PubMed  Google Scholar 

  47. Tedeschi A, Dupraz S, Laskowski CJ, Xue J, Ulas T, Beyer M, et al. The calcium channel subunit Alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron. 2016;92(2):419–34.

    CAS  PubMed  Google Scholar 

  48. Sun W, Larson MJ, Kiyoshi CM, Annett AJ, Stalker WA, Peng J, et al. Gabapentinoid treatment promotes corticospinal plasticity and regeneration following murine spinal cord injury. J Clin Investig. 2020;130(1):345–58.

    CAS  PubMed  Google Scholar 

  49. Brennan FH, Noble BT, Wang Y, Guan Z, Davis H, Mo X, et al. Acute post-injury blockade of α2δ-1 calcium channel subunits prevents pathological autonomic plasticity after spinal cord injury. Cell Rep. 2021;34(4): 108667.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Warner FM, Cragg JJ, Jutzeler CR, Röhrich F, Weidner N, Saur M, et al. Early administration of gabapentinoids improves motor recovery after human spinal cord injury. Cell Rep. 2017;18(7):1614–8.

    CAS  PubMed  Google Scholar 

  51. Cardenas DD, Nieshoff EC, Suda K, Goto S, Sanin L, Kaneko T, et al. A randomized trial of pregabalin in patients with neuropathic pain due to spinal cord injury. Neurology. 2013;80(6):533–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilkinson JL. Neuroanatomy for medical students. Butterworth-Heinemann; 2014.

    Google Scholar 

  53. Foye WO. Foye’s principles of medicinal chemistry. Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  54. Sriram D, Yogeeswari P. Medicinal chemistry. Pearson Education India; 2009.

    Google Scholar 

  55. Farzam K, Kidron A, Lakhkar AD. Adrenergic drugs. StatPearls [Internet]. StatPearls Publishing; 2021.

    Google Scholar 

  56. Taylor BN, Cassagnol M. Alpha adrenergic receptors. StatPearls [Internet]. StatPearls Publishing; 2021.

    Google Scholar 

  57. Kim YH, Bird ET, Priebe M, Boone TB. The role of oxybutynin in spinal cord injured patients with indwelling catheters. J Urol. 1997;158(6):2083–6.

    CAS  PubMed  Google Scholar 

  58. Amarenco G, Sutory M, Zachoval R, Agarwal M, Del Popolo G, Tretter R, et al. Solifenacin is effective and well tolerated in patients with neurogenic detrusor overactivity: Results from the double-blind, randomized, active- and placebo-controlled SONIC urodynamic study. Neurourol Urodyn. 2017;36(2):414–21.

    CAS  PubMed  Google Scholar 

  59. Bycroft J, Leaker B, Wood S, Knight S, Shah J, Craggs M. The effect of darifenacin on neurogenic detrusor overactivity in patients with spinal cord injury. Neurourol Urodyn. 2003;22:A190.

    Google Scholar 

  60. Wecht JM, Cirnigliaro CM, Azarelo F, Bauman WA, Kirshblum SC. Orthostatic responses to anticholinesterase inhibition in spinal cord injury. Clin Auton Res. 2015;25(3):179–87.

    PubMed  PubMed Central  Google Scholar 

  61. Biardeau X, Przydacz M, Aharony S, Loutochin G, Campeau L, Kyheng M, et al. Early fesoterodine fumarate administration prevents neurogenic detrusor overactivity in a spinal cord transected rat model. PLoS ONE. 2017;12(1): e0169694.

    PubMed  PubMed Central  Google Scholar 

  62. Krum H, Louis WJ, Brown DJ, Howes LG. A study of the alpha-1 adrenoceptor blocker prazosin in the prophylactic management of autonomic dysreflexia in high spinal cord injury patients. Clin Auton Res. 1992;2(2):83–8.

    CAS  PubMed  Google Scholar 

  63. Baker R, Szabova A, Goldschneider K. Chronic pain. A practice of anesthesia for infants and children. Elsevier; 2019. p. 1063- 75.e2.

    Google Scholar 

  64. Kim T, Jwa CS. Effect of Alpha-1-adrenergic agonist, midodrine for the management of long-standing neurogenic shock in patient with cervical spinal cord injury: a case report. Korean J Neurotrauma. 2015;11(2):147–50.

    PubMed  PubMed Central  Google Scholar 

  65. Han SH, Cho IK, Jung JH, Jang SH, Lee BS. Long-term efficacy of mirabegron add-on therapy to antimuscarinic agents in patients with spinal cord injury. Ann Rehabil Med. 2019;43(1):54–61.

    PubMed  PubMed Central  Google Scholar 

  66. Andrade C, Rao NS. How antidepressant drugs act: A primer on neuroplasticity as the eventual mediator of antidepressant efficacy. Indian J Psychiatry. 2010;52(4):378–86.

    PubMed  PubMed Central  Google Scholar 

  67. Ryu Y, Ogata T, Nagao M, Sawada Y, Nishimura R, Fujita N. Early escitalopram administration as a preemptive treatment strategy against spasticity after contusive spinal cord injury in rats. Sci Rep. 2021;11(1):7120.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Prowting J, Maresh S, Vaughan S, Kruppe E, Alsabri B, Badr MS, Sankari A. Mirtazapine reduces susceptibility to hypocapnic central sleep apnea in males with sleep-disordered breathing: a pilot study. J Appl Physiol. (Bethesda, Md. : 1985) 2021;131(1):414–423.

  69. Mehta S, Guy S, Lam T, Teasell R, Loh E. Antidepressants are effective in decreasing neuropathic pain after SCI: a meta-analysis. Top Spinal Cord Inj Rehabil. 2015;21(2):166–73.

    PubMed  PubMed Central  Google Scholar 

  70. Richards JS, Bombardier CH, Wilson CS, Chiodo AE, Brooks L, Tate DG, et al. Efficacy of venlafaxine XR for the treatment of pain in patients with spinal cord injury and major depression: a randomized, controlled trial. Arch Phys Med Rehabil. 2015;96(4):680–9.

    PubMed  Google Scholar 

  71. Susuki K. Myelin: a specialized membrane for cell communication. Nature Education. 2010;3(9):59.

    Google Scholar 

  72. Grandy J. Microtubule stabilizing drugs: the potential role in spinal cord injuries and neurodegenerative disorders. Neurophysiol Res. 2018;1(1):21–2.

    Google Scholar 

  73. Tep C, Lim TH, Ko PO, Getahun S, Ryu JC, Goettl VM, et al. Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J Neurosci. 2013;33(2):397–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, et al. A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma. 2011;28(5):787–96.

    PubMed  Google Scholar 

  75. Maric O, Zörner B, Dietz V. Levodopa therapy in incomplete spinal cord injury. J Neurotrauma. 2008;25(11):1303–7.

    PubMed  Google Scholar 

  76. Grijalva I, García-Pérez A, Díaz J, Aguilar S, Mino D, Santiago-Rodríguez E, et al. High doses of 4-aminopyridine improve functionality in chronic complete spinal cord injury patients with MRI evidence of cord continuity. Arch Med Res. 2010;41(7):567–75.

    CAS  PubMed  Google Scholar 

  77. Navarrete-Opazo A, Dougherty BJ, Mitchell GS. Enhanced recovery of breathing capacity from combined adenosine 2A receptor inhibition and daily acute intermittent hypoxia after chronic cervical spinal injury. Exp Neurol. 2017;287(Pt 2):93–101.

    CAS  PubMed  Google Scholar 

  78. Liu Y, Sigova A, O'donnell CW, Smith C, Whissell G, Chevalier B, et al. Identification and targeted modulation of gene signaling networks. Google Patents; 2021.

  79. Zeitzer JM, Ku B, Ota D, Kiratli BJ. Randomized controlled trial of pharmacological replacement of melatonin for sleep disruption in individuals with tetraplegia. J Spinal Cord Med. 2014;37(1):46–53.

    PubMed  PubMed Central  Google Scholar 

  80. Pooyania S, Ethans K, Szturm T, Casey A, Perry D. A randomized, double-blinded, crossover pilot study assessing the effect of nabilone on spasticity in persons with spinal cord injury. Arch Phys Med Rehabil. 2010;91(5):703–7.

    PubMed  Google Scholar 

  81. Luo D, Wu G, Ji Y, Zhang Z, He F, Mou X, et al. The comparative study of clinical efficacy and safety of baclofen vs tolperisone in spasticity caused by spinal cord injury. Saudi Pharm J. 2017;25(4):655–9.

    PubMed  PubMed Central  Google Scholar 

  82. Bhatti FI, Mowforth OD, Butler MB, Bhatti AI, Adeeko S, Akhbari M, et al. Systematic review of the impact of cannabinoids on neurobehavioral outcomes in preclinical models of traumatic and nontraumatic spinal cord injury. Spinal Cord. 2021;59(12):1221–39.

    PubMed  PubMed Central  Google Scholar 

  83. Yang M, Li J, So K, Chen J, Cheng W, Wu J, et al. Efficacy and safety of lithium carbonate treatment of chronic spinal cord injuries: a double-blind, randomized, placebo-controlled clinical trial. Spinal cord. 2012;50(2):141–6.

    CAS  PubMed  Google Scholar 

  84. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol. 2017;8:6.

    Google Scholar 

  85. Lin KJ, Wang TJ, Chen SD, Lin KL, Liou CW. Two birds one stone: the neuroprotective effect of antidiabetic agents on parkinson disease-focus on sodium-glucose cotransporter 2 (SGLT2) inhibitors. Antioxidants. 2021;10(12):1935.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Khatun S, Singh A, Bader GN, Sofi FA. Imidazopyridine, a promising scaffold with potential medicinal applications and structural activity relationship (SAR): recent advances. J Biomol Struct Dyn. 2021;40:1–24.

    Google Scholar 

  87. Kuhn B, Hilpert H, Benz J, Binggeli A, Grether U, Humm R, et al. Structure-based design of indole propionic acids as novel PPARα/γ co-agonists. Bioorg Med Chem Lett. 2006;16(15):4016–20.

    CAS  PubMed  Google Scholar 

  88. Bansal G, Thanikachalam PV, Maurya RK, Chawla P, Ramamurthy S. An overview on medicinal perspective of thiazolidine-2, 4-dione: a remarkable scaffold in the treatment of type 2 diabetes. J Adv Res. 2020;23:163–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dixit VA, Bharatam PV. SAR and computer-aided drug design approaches in the discovery of peroxisome proliferator-activated receptor γ activators: a perspective. J Comput Med. 2013;1–38.

  90. Zhang D, Xuan J, Zheng BB, Zhou YL, Lin Y, Wu YS, et al. Metformin improves functional recovery after spinal cord injury via autophagy flux stimulation. Mol Neurobiol. 2017;54(5):3327–41.

    CAS  PubMed  Google Scholar 

  91. Bauman AW. Once weekly GLP-1 in persons with spinal cord injury. Peters Veterans Affairs Medical Center; 2017.

    Google Scholar 

  92. Minnema AJ, Mehta A, Boling WW, Schwab J, Simard JM, Farhadi HF. SCING—Spinal Cord Injury Neuroprotection with Glyburide: A pilot, open-label, multicentre, prospective evaluation of oral glyburide in patients with acute traumatic spinal cord injury in the USA. BMJ Open. 2019;9(10): e031329.

    PubMed  PubMed Central  Google Scholar 

  93. Han W, Li Y, Cheng J, Zhang J, Chen D, Fang M, et al. Sitagliptin improves functional recovery via GLP-1R-induced anti-apoptosis and facilitation of axonal regeneration after spinal cord injury. J Cell Mol Med. 2020;24(15):8687–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Patel SP, Cox DH, Gollihue JL, Bailey WM, Geldenhuys WJ, Gensel JC, et al. Pioglitazone treatment following spinal cord injury maintains acute mitochondrial integrity and increases chronic tissue sparing and functional recovery. Exp Neurol. 2017;293:74–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Almarzooq Z, Singh P. Cholesterol-lowering drugs and therapies in cardiovascular disease. Cholesterol lowering therapies and drugs. IntechOpen; 2016.

    Google Scholar 

  96. Willey JZ, Elkind MS. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in the treatment of central nervous system diseases. Arch Neurol. 2010;67(9):1062–7.

    PubMed  PubMed Central  Google Scholar 

  97. Murphy C, Deplazes E. The Role of Structure and Biophysical Properties in the Pleiotropic Effects of Statins. IJMS. 2020;21(22):8745.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Fong CW. Statins in therapy: understanding their hydrophilicity, lipophilicity, binding to 3-hydroxy-3-methylglutaryl-CoA reductase, ability to cross the blood brain barrier and metabolic stability based on electrostatic molecular orbital studies. Eur J Med Chem. 2014;85:661–74.

    CAS  PubMed  Google Scholar 

  99. Bauman WA, Spungen AM. Carbohydrate and lipid metabolism in chronic spinal cord injury. J Spinal Cord Med. 2001;24(4):266–77.

    CAS  PubMed  Google Scholar 

  100. Kahveci R, Gökçe EC, Gürer B, Gökçe A, Kisa U, Cemil DB, et al. Neuroprotective effects of rosuvastatin against traumatic spinal cord injury in rats. Eur J Pharmacol. 2014;15(741):45–54.

    Google Scholar 

  101. Sohn HM, Hwang JY, Ryu JH, Kim J, Park S, Park JW, et al. Simvastatin protects ischemic spinal cord injury from cell death and cytotoxicity through decreasing oxidative stress: in vitro primary cultured rat spinal cord model under oxygen and glucose deprivation-reoxygenation conditions. J Orthop Surg Res. 2017;12(1):36.

    PubMed  PubMed Central  Google Scholar 

  102. La Fountaine MF, Cirnigliaro CM, Hobson JC, Lombard AT, Specht AF, Dyson-Hudson TA, et al. A Four Month Randomized Controlled Trial on the Efficacy of Once-daily Fenofibrate Monotherapy in Persons with Spinal Cord Injury. Sci Rep. 2019:9(1):17166.

  103. Boskey, A. J. B. r., Bone composition: relationship to bone fragility and antiosteoporotic drug effects. 2013, 2, 447.

  104. Schnitzer TJ, Kim K, Marks J, Yeasted R, Simonian N, Chen D. Zoledronic acid treatment after acute spinal cord injury: results of a randomized, placebo-controlled pilot trial. PM R. 2016;8(9):833–43.

    PubMed  Google Scholar 

  105. Lamarche J, Mailhot G. Vitamin D and spinal cord injury: should we care? Spinal Cord. 2016;54(12):1060–75.

    CAS  PubMed  Google Scholar 

  106. Cirnigliaro CM, Parrott JS, Myslinski MJ, Asselin P, Lombard AT, La Fountaine MF, et al. Relationships between T-scores at the hip and bone mineral density at the distal femur and proximal tibia in persons with spinal cord injury. Journal Spinal Cord Med. 2020;43(5):685-695.

  107. Edwards WB, Simonian N, Haider IT, Anschel AS, Chen D, Gordon KE, et al. Effects of teriparatide and vibration on bone mass and bone strength in people with bone loss and spinal cord injury: a randomized, controlled trial. J Bone Miner Res. 2018;33(10):1729–40.

    CAS  PubMed  Google Scholar 

  108. Moran de Brito C, Battistella L, Saito E, Sakamoto H. Effect of alendronate on bone mineral density in spinal cord injury patients: a pilot study. Spinal cord. 2005;43(6):341–8.

    CAS  PubMed  Google Scholar 

  109. Bangura A, Shuler T, Wright L, Lake A. Spinal cord injury induced osteoporosis: case report and current literature. Int J Med Students. 2021;9(2):162–6.

    Google Scholar 

  110. Barrowman J, Wilson M. Drugs affecting coagulation. Anaesth Intensive Care Med. 2021;22(11):729–37.

    Google Scholar 

  111. Matis GK, Birbilis TA. Erythropoietin in spinal cord injury. Eur Spine J. 2009;18(3):314–23.

    PubMed  Google Scholar 

  112. Yoshizaki S, Kijima K, Hara M, Saito T, Tamaru T, Tanaka M, et al. Tranexamic acid reduces heme cytotoxicity via the TLR4/TNF axis and ameliorates functional recovery after spinal cord injury. J Neuroinflammation. 2019;16(1):160.

    PubMed  PubMed Central  Google Scholar 

  113. Piran S, Zondag M, Bednar D, Drew B, Chmiel A, Chan N, et al. Apixaban versus dalteparin for thromboprophylaxis in patients with acute spinal cord injury: a pilot study. Blood. 2019;134(Supplement_1):2434.

    Google Scholar 

  114. Wohlleben W, Mast Y, Stegmann E, Ziemert NJMb. Antibiotic. Drug Discov. 2016;9(5):541–8.

    Google Scholar 

  115. Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72–80.

    CAS  PubMed  Google Scholar 

  116. Ibrahim SM, Elshafiey EH, Abdulrahim ER, Azazy ER, Abd-Elghany EZ, Mahmoud ES, et al. Steroids in medicinal chemistry: literature review. Acad J Chem. 2021;6(3):69–78.

    CAS  Google Scholar 

  117. Galuppo M, Rossi A, Giacoppo S, Pace S, Bramanti P, Sautebin L, et al. Use of Mometasone furoate in prolonged treatment of experimental spinal cord injury in mice: a comparative study of three different glucocorticoids. Pharmacol Res. 2015;99:316–28.

    PubMed  Google Scholar 

  118. Zeman RJ, Bauman WA, Wen X, Ouyang N, Etlinger JD, Cardozo CP. Improved functional recovery with oxandrolone after spinal cord injury in rats. NeuroReport. 2009;20(9):864–8.

    CAS  PubMed  Google Scholar 

  119. Nandoe Tewarie RS, Hurtado A, Bartels RH, Grotenhuis A, Oudega M. Stem cell-based therapies for spinal cord injury. J Spinal Cord Med. 2009;32(2):105–14.

    PubMed  Google Scholar 

  120. Zipser CM, Cragg JJ, Guest JD, Fehlings MG, Jutzeler CR, Anderson AJ, et al. Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol. 2022;21(7):659–70.

    PubMed  Google Scholar 

  121. Lebkowski J. GRNOPC1: the world’s first embryonic stem cell-derived therapy. Regener Med. 2011;6(6s):11–3.

    Google Scholar 

  122. Eros D, Szántai-Kis C, Kiss R, Kéri G, Hegymegi-Barakonyi B, Kövesdi I, et al. Structure-activity relationships of PDE5 inhibitors. Curr Med Chem. 2008;15(16):1570–85.

    CAS  PubMed  Google Scholar 

  123. Derry FA, Dinsmore WW, Fraser M, Gardner BP, Glass CA, Maytom MC, et al. Efficacy and safety of oral sildenafil (Viagra) in men with erectile dysfunction caused by spinal cord injury. Neurology. 1998;51(6):1629–33.

    CAS  PubMed  Google Scholar 

  124. Yeo M, Chen Y, Jiang C, Chen G, Wang K, Chandra S, et al. Repurposing cancer drugs identifies kenpaullone which ameliorates pathologic pain in preclinical models via normalization of inhibitory neurotransmission. Nat Commun. 2021;12(1):1–16.

    Google Scholar 

  125. Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z. Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci. 2002;22(17):7526–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Green SA, Alon A, Ianus J, McNaughton KS, Tozzi CA, Reiss TF. Efficacy and safety of a neurokinin-1 receptor antagonist in postmenopausal women with overactive bladder with urge urinary incontinence. J Urol. 2006;176(6):2535–40.

    CAS  PubMed  Google Scholar 

  127. Cheng C-L, Ma C-P, de Groat WC. Effect of capsaicin on micturition and associated reflexes in chronic spinal rats. Brain Res. 1995;678(1–2):40–8.

    CAS  PubMed  Google Scholar 

  128. Kreider RB, Stout JR. Creatine in health and disease. Nutrients. 2021;13(2):447.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ferreira GC, McKenna MC. L-Carnitine and Acetyl-L-carnitine Roles and Neuroprotection in Develo** Brain. Neurochem Res. 2017;42(6):1661–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Jacobson PB, Goody R, Lawrence M, Mueller BK, Zhang X, Hooker BA, et al. Elezanumab, a human anti-RGMa monoclonal antibody, promotes neuroprotection, neuroplasticity, and neurorecovery following a thoracic hemicompression spinal cord injury in non-human primates. Neurobiol Dis. 2021;155: 105385.

    CAS  PubMed  Google Scholar 

  131. Turtle JD, Strain MM, Aceves M, Huang YJ, Reynolds JA, Hook MA, et al. Pain Input Impairs Recovery after Spinal Cord Injury: Treatment with Lidocaine. J Neurotrauma. 2017;34(6):1200–8.

    PubMed  PubMed Central  Google Scholar 

  132. Wang X, Budel S, Baughman K, Gould G, Song KH, Strittmatter SM. Ibuprofen enhances recovery from spinal cord injury by limiting tissue loss and stimulating axonal growth. J Neurotrauma. 2009;26(1):81–95.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Kumar.

Ethics declarations

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

All clinical trial data in this paper are available in the public domain: clinicaltrials.gov.

Code Availability

Not applicable.

Author Contributions

The first manuscript draft was written by LG. The idea of the review topic was first thought of, and the manuscript underwent its first pre-submission edit by LG and HK. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guha, L., Kumar, H. Drug Repurposing for Spinal Cord Injury: Progress Towards Therapeutic Intervention for Primary Factors and Secondary Complications. Pharm Med 37, 463–490 (2023). https://doi.org/10.1007/s40290-023-00499-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40290-023-00499-3

Navigation