Log in

Effect of Caffeine Consumption on Cardiovascular Disease: An Updated Review

  • Review Article
  • Published:
Pharmaceutical Medicine Aims and scope Submit manuscript

Abstract

The incidence of cardiovascular diseases has significantly increased with the expansion of the industrialization of societies, which is notably linked to lifestyle changes and an unhealthy diet. Hence, determining the healthiest diet habits and supplements seems to be an appropriate way to decrease the global burden of cardiovascular diseases. Currently, caffeine, one of the most widely consumed compounds in the world, has emerged with some promising results in the treatment of numerous pathophysiological conditions of cardiovascular diseases. A literature search was conducted in PubMed, Scopus, Science Direct, Google Scholar, and Web of Science databases for the relevant articles regarding the pharmacology, preclinical, and clinical studies on the potential effects of caffeine on cardiovascular diseases. While caffeine could improve cardiovascular outcomes through several mechanisms of action, the literature review revealed controversial clinical effects of caffeine on blood pressure, cardiac arrhythmias, acute coronary syndrome, stable angina, and heart failure. In the case of dyslipidemia, coffee consumption increased total cholesterol, triglyceride, and low-density lipoprotein. Taken together, the existence of multiple confounding factors in the caffeine studies has resulted in inconclusive data interpretation. Further well-designed studies with adequate control of the confounding factors are warranted to draw a clear conclusion on the cardiovascular efficacy and safety of caffeine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics: 2013 update: a report from the American Heart Association. Circulation. 2013. https://doi.org/10.1161/CIR.0b013e31828124ad.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Writing Committee: Smith Jr SC, Collins A, Ferrari R, Holmes Jr DR, Logstrup S, et al. Our time: a call to save preventable death from cardiovascular disease (heart disease and stroke). Eur Heart J. 2012. https://doi.org/10.1016/j.gheart.2012.08.002.

  3. Keyhan G, Chen SF, Pilote L. Angiotensin-converting enzyme inhibitors and survival in women and men with heart failure. Eur J Heart Fail. 2007. https://doi.org/10.1016/j.ejheart.2007.03.004.

    Article  PubMed  Google Scholar 

  4. Khan MS, Fonarow GC, Ahmed A, Greene SJ, Vaduganathan M, Khan H, et al. Dose of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and outcomes in heart failure: a meta-analysis. Circ Heart Fail. 2017. https://doi.org/10.1161/circheartfailure.117.003956.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bouabdallaoui N, Tardif J-C, Waters DD, Pinto FJ, Maggioni AP, Diaz R, et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J. 2020. https://doi.org/10.1093/eurheartj/ehaa659.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Samuel M, Tardif J-C, Khairy P, Roubille F, Waters DD, Grégoire JC, et al. Cost-effectiveness of low-dose colchicine after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J Qual Care Clin Outcomes. 2021. https://doi.org/10.1093/ehjqcco/qcaa045.

    Article  PubMed  Google Scholar 

  7. Annink KV, Franz AR, Derks JB, Rudiger M, Bel FV, Benders MJ. Allopurinol: old drug, new indication in neonates? Curr Pharm Des. 2017. https://doi.org/10.2174/1381612823666170918123307.

    Article  PubMed  Google Scholar 

  8. Willson C. The clinical toxicology of caffeine: a review and case study. Toxicol Rep. 2018. https://doi.org/10.1016/j.toxrep.2018.11.002.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nationa Coffee Association. National coffee drinking trends. New York: National Coffee Association; 2014.

  10. Oñatibia-Astibia A, Franco R, Martínez-Pinilla E. Health benefits of methylxanthines in neurodegenerative diseases. Mol Nutr Food Res. 2017;61:1600670.

    Article  Google Scholar 

  11. El Agaty S, Seif A. Cardiovascular effects of long-term caffeine administration in aged rats. Irish J Med Sci. 2015. https://doi.org/10.1007/s11845-014-1098-z.

    Article  PubMed  Google Scholar 

  12. Voskoboinik A, Koh Y, Kistler PM. Cardiovascular effects of caffeinated beverages. Trends Cardiovasc Med. 2019. https://doi.org/10.1016/j.tcm.2018.09.019.

    Article  PubMed  Google Scholar 

  13. Chou TM, Benowitz NL. Caffeine and coffee: effects on health and cardiovascular disease. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1994;109:173.

    Article  CAS  PubMed  Google Scholar 

  14. Shin S, Lee JE, Loftfield E, Shu X-O, Abe SK, Rahman MS, et al. Coffee and tea consumption and mortality from all causes, cardiovascular disease and cancer: a pooled analysis of prospective studies from the Asia Cohort Consortium. Int J Epidemiol. 2022. https://doi.org/10.1093/ije/dyab161.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kolahdouzan M, Hamadeh MJ. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci Ther. 2017. https://doi.org/10.1111/cns.12684.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Magkos F, Kavouras SA. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr. 2005. https://doi.org/10.1080/1040-830491379245.

    Article  PubMed  Google Scholar 

  17. Ngueta G. Caffeine and caffeine metabolites in relation to hypertension in US adults. Eur J Clin Nutr. 2020. https://doi.org/10.1038/s41430-019-0430-0.

    Article  PubMed  Google Scholar 

  18. Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000. https://doi.org/10.1097/00004872-200018060-00002.

    Article  PubMed  Google Scholar 

  19. Alsabri SG, Mari WO, Younes S, Alsadawi MA, Oroszi TL. Kinetic and dynamic description of caffeine. J Caffeine Adenosine Res. 2018.

  20. Fisone G, Borgkvist A, Usiello A. Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci. 2004;61:857.

    Article  CAS  PubMed  Google Scholar 

  21. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020. https://doi.org/10.1038/s41581-019-0244-2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oboh G, Ojueromi OO, Ademosun AO, Omayone TP, Oyagbemi AA, Ajibade TO, et al. Effects of caffeine and caffeic acid on selected biochemical parameters in L-NAME-induced hypertensive rats. J Food Biochem. 2021. https://doi.org/10.1111/jfbc.13384.

    Article  PubMed  Google Scholar 

  23. Noordzij M, Uiterwaal CS, Arends LR, Kok FJ, Grobbee DE, Geleijnse JM. Blood pressure response to chronic intake of coffee and caffeine: a meta-analysis of randomized controlled trials. J Hypertens. 2005. https://doi.org/10.1097/01.hjh.0000166828.94699.1d.

    Article  PubMed  Google Scholar 

  24. Chei C-L, Loh JK, Soh A, Yuan J-M, Koh W-P. Coffee, tea, caffeine, and risk of hypertension: the Singapore Chinese Health Study. Eur J Nutr. 2018. https://doi.org/10.1007/s00394-017-1412-4.

    Article  PubMed  Google Scholar 

  25. D’Elia L, La Fata E, Galletti F, Scalfi L, Strazzullo P. Coffee consumption and risk of hypertension: a dose–response meta-analysis of prospective studies. Eur J Nutr. 2019. https://doi.org/10.1007/s00394-017-1591-z.

    Article  PubMed  Google Scholar 

  26. Hartley TR, Sung BH, Pincomb GA, Whitsett TL, Wilson MF, Lovallo WR. Hypertension risk status and effect of caffeine on blood pressure. Hypertension. 2000. https://doi.org/10.1161/01.hyp.36.1.137.

    Article  PubMed  Google Scholar 

  27. Pincomb GA, Lovallo WR, McKey BS, Sung BH, Passey RB, Everson SA, et al. Acute blood pressure elevations with caffeine in men with borderline systemic hypertension. Am J Cardiol. 1996. https://doi.org/10.1016/s0002-9149(97)89392-7.

    Article  PubMed  Google Scholar 

  28. Teramoto M, Yamagishi K, Muraki I, Tamakoshi A, Iso H. Coffee and green tea consumption and cardiovascular disease mortality among people with and without hypertension. J Am Heart Assoc. 2023. https://doi.org/10.1161/JAHA.122.026477.

    Article  PubMed  Google Scholar 

  29. Chen S, Li J, Gao M, Li D, Shen R, Lyu L, et al. Association of caffeine intake with all-cause and cardiovascular mortality in elderly patients with hypertension. Frontier Nutr. 2022. https://doi.org/10.3389/fnut.2022.1023345.

    Article  Google Scholar 

  30. Rhee JJ, Qin F, Hedlin HK, Chang TI, Bird CE, Zaslavsky O, et al. Coffee and caffeine consumption and the risk of hypertension in postmenopausal women. Am J Clin Nutr. 2016. https://doi.org/10.3945/ajcn.115.120147.

    Article  PubMed  Google Scholar 

  31. Shepard JD, al’absi M, Whitsett TL, Passey RB, Lovallo WR. Additive pressor effects of caffeine and stress in male medical students at risk for hypertension. Am J Hypertens. 2000. https://doi.org/10.1016/s0895-7061(99)00217-4.

    Article  PubMed  Google Scholar 

  32. Bennett JM, Rodrigues IM, Klein LC. Effects of caffeine and stress on biomarkers of cardiovascular disease in healthy men and women with a family history of hypertension. Stress Health. 2013. https://doi.org/10.1002/smi.2486.

    Article  PubMed  Google Scholar 

  33. Miranda AM, Goulart AC, Benseñor IM, Lotufo PA, Marchioni DM. Coffee consumption and risk of hypertension: a prospective analysis in the cohort study. Clin Nutr. 2021. https://doi.org/10.1016/j.clnu.2020.05.052.

    Article  PubMed  Google Scholar 

  34. Hou C-C, Tantoh DM, Lin C-C, Chen P-H, Yang H-J, Liaw Y-P. Association between hypertension and coffee drinking based on CYP1A2 rs762551 single nucleotide polymorphism in Taiwanese. Nutr Metabol. 2021. https://doi.org/10.1186/s12986-021-00605-9.

    Article  Google Scholar 

  35. Mehta A, Jain A, Mehta M, Billie M. Caffeine and cardiac arrhythmias: an experimental study in dogs with review of literature. Acta Cardiol. 1997.

  36. Strubelt O, Strubelt MO, Diederich K-W. Experimental treatment of the acute cardiovascular toxicity of caffeine. J Toxicol. 1999. https://doi.org/10.1081/clt-100102405.

    Article  Google Scholar 

  37. Ishida S, Ito M, Takahashi N, Fu**o T, Akimitsu T, Saikawa T. Caffeine induces ventricular tachyarrhythmias possibly due to triggered activity in rabbits in vivo. Jpn Circ J. 1996. https://doi.org/10.1253/jcj.60.157.

    Article  PubMed  Google Scholar 

  38. Conen D, Chiuve SE, Everett BM, Zhang SM, Buring JE, Albert CM. Caffeine consumption and incident atrial fibrillation in women. Am J Clin Nutr. 2010. https://doi.org/10.3945/ajcn.2010.29627.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mostofsky E, Johansen MB, Lundbye-Christensen S, Tjønneland A, Mittleman MA, Overvad K. Risk of atrial fibrillation associated with coffee intake: findings from the Danish Diet, Cancer, and Health Study. Eur J Prevent Cardiol. 2016. https://doi.org/10.1177/2047487315624524.

    Article  Google Scholar 

  40. Larsson SC, Drca N, Jensen-Urstad M, Wolk A. Coffee consumption is not associated with increased risk of atrial fibrillation: results from two prospective cohorts and a meta-analysis. BMC Med. 2015. https://doi.org/10.1186/s12916-015-0447-8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Klatsky AL, Hasan AS, Armstrong MA, Udaltsova N, Morton C. Coffee, caffeine, and risk of hospitalization for arrhythmias. Permanente J. 2011. https://doi.org/10.7812/tpp/11-020.

    Article  Google Scholar 

  42. Dixit S, Stein PK, Dewland TA, Dukes JW, Vittinghoff E, Heckbert SR, et al. Consumption of caffeinated products and cardiac ectopy. J Am Heart Assoc. 2016. https://doi.org/10.1161/jaha.115.002503.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zuchinali P, Souza GC, Pimentel M, Chemello D, Zimerman A, Giaretta V, et al. Short-term effects of high-dose caffeine on cardiac arrhythmias in patients with heart failure: a randomized clinical trial. JAMA Intern Med. 2016. https://doi.org/10.1001/jamainternmed.2016.6374.

    Article  PubMed  Google Scholar 

  44. Posch MI, Kay MD, Harhash AA, Huang JJ, Krupinski EA, Abidov A, et al. Daily caffeine consumption is associated with decreased incidence of symptoms and hemodynamic changes during pharmacologic stress with regadenoson. J Nucl Med Technol. 2020. https://doi.org/10.2967/jnmt.118.225219.

    Article  PubMed  Google Scholar 

  45. Frost L, Vestergaard P. Caffeine and risk of atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Clin Nutr. 2005. https://doi.org/10.1093/ajcn/81.3.578.

    Article  PubMed  Google Scholar 

  46. Zuchinali P, Ribeiro PA, Pimentel M, da Rosa PR, Zimerman LI, Rohde LE. Effect of caffeine on ventricular arrhythmia: a systematic review and meta-analysis of experimental and clinical studies. Europace. 2016. https://doi.org/10.1093/europace/euv261.

    Article  PubMed  Google Scholar 

  47. Bazal P, Gea A, Navarro A, Salas-Salvadó J, Corella D, Alonso-Gómez A, et al. Caffeinated coffee consumption and risk of atrial fibrillation in two Spanish cohorts. Eur J Prevent Cardiol. 2021. https://doi.org/10.1177/2047487320909065.

    Article  Google Scholar 

  48. Chieng D, Canovas R, Segan L, Sugumar H, Voskoboinik A, Prabhu S, et al. The impact of coffee subtypes on incident cardiovascular disease, arrhythmias, and mortality: long-term outcomes from the UK Biobank. Eur J Prevent Cardiol. 2022. https://doi.org/10.1093/eurjpc/zwac189.

    Article  Google Scholar 

  49. Rouhani MH, Rashidi-Pourfard N, Salehi-Abargouei A, Karimi M, Haghighatdoost F. Effects of egg consumption on blood lipids: a systematic review and meta-analysis of randomized clinical trials. J Am Coll Nutr. 2018. https://doi.org/10.1080/07315724.2017.1366878.

    Article  PubMed  Google Scholar 

  50. Smith G. Epidemiology of dyslipidemia and economic burden on the healthcare system. Am J Manage Care. 2007.

  51. Bhandari S, Gupta P, Quinn P, Sandhu J, Hakimi A, Jones D, et al. Pleiotropic effects of statins in hypercholesterolaemia: a prospective observational study using a lipoproteomic based approach. Lancet. 2015. https://doi.org/10.1016/s0140-6736(15)60336-1.

    Article  PubMed  Google Scholar 

  52. Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016. https://doi.org/10.1161/circulationaha.115.020406.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Choi E-Y, Cho Y-O. Interaction of physical trainings and coffee intakes in fuel utilization during exercise in rats. Nutr Res Pract. 2013. https://doi.org/10.4162/nrp.2013.7.3.178.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Banitalebi E, Rahimi A, Faramarzi M, Ghahfarrokhi MM. The effects of elastic resistance band training and green coffee bean extract supplement on novel combined indices of cardiometabolic risk in obese women. Res Pharm Sci. 2019. https://doi.org/10.4103/1735-5362.268202.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Du Y, Lv Y, Zha W, Hong X, Luo Q. Effect of coffee consumption on dyslipidemia: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2020. https://doi.org/10.1016/j.numecd.2020.08.017.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cai L, Ma D, Zhang Y, Liu Z, Wang P. The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2012. https://doi.org/10.1038/ejcn.2012.68.

    Article  PubMed  Google Scholar 

  57. Petrovic D, Pruijm M, Ponte B, Dhayat NA, Ackermann D, Ehret G, et al. Investigating the relations between caffeine-derived metabolites and plasma lipids in 2 population-based studies. Mayo Clin Proc. 2021;96:3071–85.

    Article  CAS  PubMed  Google Scholar 

  58. Han J, Shon J, Hwang J-Y, Park YJ. Effects of coffee intake on dyslipidemia risk according to genetic variants in the adora gene family among Korean adults. Nutrients. 2020. https://doi.org/10.3390/nu12020493.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Boersma E, Mercado N, Poldermans D, Gardien M, Vos J, Simoons ML. Acute myocardial infarction. Lancet. 2003. https://doi.org/10.1016/s0140-6736(03)12712-2.

    Article  PubMed  Google Scholar 

  60. Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008. https://doi.org/10.1038/nature06797.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Braunwald E, Morrow DA. Unstable angina: is it time for a requiem? Circulation. 2013. https://doi.org/10.1161/circulationaha.113.001258.

    Article  PubMed  Google Scholar 

  62. Levent S, Yolcu S. A rare adverse effect of energy drinks: non-ST-elevation myocardial infarction. Hong Kong J Emerg Med. 2018. https://doi.org/10.1177/1024907917751302.

    Article  Google Scholar 

  63. Richardson T, Baker J, Thomas P, Meckes C, Rozkovec A, Kerr D. Randomized control trial investigating the influence of coffee on heart rate variability in patients with ST-segment elevation myocardial infarction. QJM. 2009. https://doi.org/10.1093/qjmed/hcp072.

    Article  PubMed  Google Scholar 

  64. Miranda AM, Goulart AC, Bensenor IM, Lotufo PA, Marchioni DM. Moderate coffee consumption is associated with lower risk of mortality in prior acute coronary syndrome patients: a prospective analysis in the ERICO cohort. Int J Food Sci Nutr. 2021. https://doi.org/10.1080/09637486.2020.1862069.

    Article  PubMed  Google Scholar 

  65. Brown OI, Allgar V, Wong KYK. Coffee reduces the risk of death after acute myocardial infarction: a meta-analysis. Coron Artery Dis. 2016. https://doi.org/10.1097/mca.0000000000000397.

    Article  PubMed  Google Scholar 

  66. Lindholm D, Storey RF, Christersson C, Halvorsen S, Grove EL, Braun OÖ, et al. Design and rationale of TROCADERO: a trial of caffeine to alleviate dyspnea related to ticagrelor. Am Heart J. 2015. https://doi.org/10.1016/j.ahj.2015.06.014.

    Article  PubMed  Google Scholar 

  67. Surma S, Sahebkar A, Banach M. Coffee or tea: Anti-inflammatory properties in the context of atherosclerotic cardiovascular disease prevention. Pharmacol Res. 2022. https://doi.org/10.1016/j.phrs.2022.106596.

    Article  PubMed  Google Scholar 

  68. Chieng D, Kistler PM. Coffee and tea on cardiovascular disease (CVD) prevention. Trends Cardiovasc Med. 2022. https://doi.org/10.1016/j.tcm.2021.08.004.

    Article  PubMed  Google Scholar 

  69. Naderali E, Poyser N. The effect of caffeine on prostaglandin output from the perfused mesenteric vascular bed of the rat. Prostagland Leukot Essent Fatty Acids. 1994. https://doi.org/10.1016/0952-3278(94)90058-2.

    Article  Google Scholar 

  70. Piters KM, Colombo A, Olson HG, Butman SM. Effect of coffee on exercise-induced angina pectoris due to coronary artery disease in habitual coffee drinkers. Am J Cardiol. 1985. https://doi.org/10.1016/0002-9149(85)90360-1.

    Article  PubMed  Google Scholar 

  71. Clyde W, Jessup Y, Bozkurt B. ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013. https://doi.org/10.1016/j.jacc.2013.05.019.

    Article  Google Scholar 

  72. Roger VL. Epidemiology of heart failure. Circ Res. 2013. https://doi.org/10.1161/circresaha.113.300268.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tofovic SP, Kusaka H, Rominski B, Jackson EK. Caffeine increases renal renin secretion in a rat model of genetic heart failure. J Cardiovasc Pharmacol. 1999. https://doi.org/10.1097/00005344-199903000-00015.

    Article  PubMed  Google Scholar 

  74. Notarius CF, Morris B, Floras JS. Caffeine prolongs exercise duration in heart failure. J Cardiac Fail. 2006. https://doi.org/10.1016/j.cardfail.2005.12.005.

    Article  Google Scholar 

  75. Bodar V, Chen J, Sesso HD, Gaziano JM, Djoussé L. Coffee consumption and risk of heart failure in the Physicians’ Health Study. Clin Nutr ESPEN. 2020. https://doi.org/10.1016/j.clnesp.2020.09.216.

    Article  PubMed  Google Scholar 

  76. van Oort S, Beulens JW, van Ballegooijen AJ, Handoko ML, Larsson SC. Modifiable lifestyle factors and heart failure: a Mendelian randomization study. Am Heart J. 2020. https://doi.org/10.1016/j.ahj.2020.06.007.

    Article  PubMed  Google Scholar 

  77. Mostofsky E, Rice MS, Levitan EB, Mittleman MA. Habitual coffee consumption and risk of heart failure: a dose-response meta-analysis. Circ Heart Fail. 2012. https://doi.org/10.1161/circheartfailure.112.967299.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taher Entezari-Maleki.

Ethics declarations

Funding

No external funding was used in the preparation of this article.

Conflicts of interest/competing interests

Sajad Khiali, Amin Agabalazadeh, Hadi Sahrai, Hossein Bannazadeh Baghi, Gholamreza Rahbari Banaeian , and Taher Entezari-Maleki have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Dvailability of data and material

Data sharing is not applicable to this article as no datasets were generated.

Code availability

Not applicable.

Authors’ contributions

SK, AA, and HS searched the literature and wrote the manuscript; TE, HB, and GR reviewed and revised the manuscript; and TE selected the literature and designed, revised, and edited the manuscript. All of the authors have read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khiali, S., Agabalazadeh, A., Sahrai, H. et al. Effect of Caffeine Consumption on Cardiovascular Disease: An Updated Review. Pharm Med 37, 139–151 (2023). https://doi.org/10.1007/s40290-023-00466-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40290-023-00466-y

Navigation