Log in

Cell Biology of Parkin: Clues to the Development of New Therapeutics for Parkinson’s Disease

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Parkinson’s disease is the second most prevalent neurodegenerative disease and contributes significantly to morbidity globally. Currently, no disease-modifying therapies exist to combat this disorder. Insights from the molecular and cellular pathobiology of the disease seems to indicate promising therapeutic targets. The parkin protein has been extensively studied for its role in autosomal recessive Parkinson’s disease and, more recently, its role in sporadic Parkinson’s disease. Parkin is an E3 ubiquitin ligase that plays a prominent role in mitochondrial quality control, mitochondrial-dependent cell death pathways, and other diverse functions. Understanding the numerous roles of parkin has introduced many new possibilities for therapeutic modalities in treating both autosomal recessive Parkinson’s disease and sporadic Parkinson’s disease. In this article, we review parkin biology with an emphasis on mitochondrial-related functions and propose novel, potentially disease-modifying therapeutic approaches for treating this debilitating condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, et al. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Parkinsons Dis. 2020;6:15.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW, et al.; Parkinson’s Foundation P4 Group. et al. Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis. 2018;4:21.

  3. Lang AE, Lozano AM. Parkinson’s disease. N Engl J Med. 1998;339:1130–43.

    Article  CAS  PubMed  Google Scholar 

  4. Fahn S, Sulzer D. Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx. 2004;1:139–54.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Giguère N, Burke Nanni S, Trudeau L-E. On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front Neurol. 2018;9:455.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pankratz N, Foroud T. Genetics of Parkinson disease. Genet Med. 2007;9:801–11.

    Article  PubMed  Google Scholar 

  7. Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19:170–8.

    Article  CAS  PubMed  Google Scholar 

  8. Hernandez DG, Reed X, Singleton AB. Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J Neurochem. 2016;139:59–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. von Coelln R, Dawson VL, Dawson TM. Parkin-associated Parkinson’s disease. Cell Tissue Res. 2004;318:175–84.

    Article  CAS  Google Scholar 

  10. Lücking CB, Dürr A, Bonifati V, Vaughan J, De Michele G, Gasser T, et al. Association between early-onset Parkinson’s disease and mutations in the Parkin gene. N Engl J Med. 2000;342:1560–7.

    Article  PubMed  Google Scholar 

  11. Sun Y, Yu H, Zhou X, **ong W, Luo S, Chen C, et al. Disease progression in patients with Parkin related Parkinson’s disease in a longitudinal cohort. Mov Disord. 2020;mds.28349.

  12. Kam T-I, Mao X, Park H, Chou S-C, Karuppagounder SS, Umanah GE, et al. Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science. 2018;362:eaat8407.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ham S, Yun SP, Kim H, Kim D, Seo BA, Kim H, et al. Amyloid-like oligomerization of AIMP2 contributes to α-synuclein interaction and Lewy-like inclusion. Sci Transl Med. 2020;12:eaax0091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung KKK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, et al. Parkin ubiquitinates the α-synuclein–interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med. 2001;7:1144–50.

    Article  CAS  PubMed  Google Scholar 

  15. Murakami T, Shoji M, Imai Y, Inoue H, Kawarabayashi T, Matsubara E, et al. Pael-R is accumulated in Lewy bodies of Parkinson’s disease. Ann Neurol. 2004;55:439–42.

    Article  CAS  PubMed  Google Scholar 

  16. Wakabayashi K, Engelender S, Yoshimoto M, Tsuji S, Ross CA, Takahashi H. Synphilin-1 is present in Lewy bodies in Parkinson’s disease. Ann Neurol. 2000;47:521–3.

    Article  CAS  PubMed  Google Scholar 

  17. Shimura H, Hattori N, Kubo S, Yoshikawa M, Kitada T, Matsumine H, et al. Immunohistochemical and subcellular localization of parkin protein: absence of protein in autosomal recessive juvenile parkinsonism patients. Ann Neurol. 1999;45:668–72.

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi S, Wakabayashi K, Ishikawa A, Nagai H, Saito M, Maruyama M, et al. An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov Disord. 2000;15:884–8.

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi H, Ohama E, Suzuki S, Horikawa Y, Ishikawa A, Morita T, et al. Familial juvenile parkinsonism: clinical and pathologic study in a family. Neurology. 1994;44:437–41.

    Article  CAS  PubMed  Google Scholar 

  20. Farrer M, Chan P, Chen R, Tan L, Lincoln S, Hernandez D, et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol. 2001;50:293–300.

    Article  CAS  PubMed  Google Scholar 

  21. Espay AJ, Brundin P, Lang AE. Precision medicine for disease modification in Parkinson disease. Nat Rev Neurol. 2017;13:119–26.

    Article  PubMed  Google Scholar 

  22. Antonini A, Moro E, Godeiro C, Reichmann H. Medical and surgical management of advanced Parkinson’s disease: management of advanced Parkinson’s disease. Mov Disord. 2018;33:900–8.

    Article  PubMed  Google Scholar 

  23. Lang AE, Espay AJ. Disease modification in Parkinson’s disease: current approaches, challenges, and future considerations: disease modification in PD. Mov Disord. 2018;33:660–77.

    Article  PubMed  Google Scholar 

  24. Lozano AM, Dostrovsky J, Chen R, Ashby P. Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol. 2002;1:225–31.

    Article  PubMed  Google Scholar 

  25. Kann O, Kovács R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol. 2007;292:C641–57.

    Article  CAS  PubMed  Google Scholar 

  26. Amadoro G, Corsetti V, Florenzano F, Atlante A, Bobba A, Nicolin V, et al. Morphological and bioenergetic demands underlying the mitophagy in post-mitotic neurons: the PINK-parkin pathway. Front Aging Neurosci. 2014;6:18.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci. 2017;18:101–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Misgeld T, Schwarz TL. Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron. 2017;96:651–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pacelli C, Giguère N, Bourque M-J, Lévesque M, Slack RS, Trudeau L-É. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol. 2015;25:2349–60.

    Article  CAS  PubMed  Google Scholar 

  30. Giguère N, Pacelli C, Saumure C, Bourque M-J, Matheoud D, Levesque D, et al. Comparative analysis of Parkinson’s disease-associated genes in mice reveals altered survival and bioenergetics of parkin-deficient dopamine neurons. J Biol Chem. 2018;293:9580–93.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pickrell AM, Youle RJ. The Roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85:257–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rüb C, Wilkening A, Voos W. Mitochondrial quality control by the Pink1/parkin system. Cell Tissue Res. 2017;367:111–23.

    Article  PubMed  Google Scholar 

  33. Voigt A, Berlemann LA, Winklhofer KF. The mitochondrial kinase PINK1: functions beyond mitophagy. J Neurochem. 2016;139:232–9.

    Article  CAS  PubMed  Google Scholar 

  34. Rasool S, Soya N, Truong L, Croteau N, Lukacs GL, Trempe J-F. PINK1 autophosphorylation is required for ubiquitin recognition. EMBO Rep. 2018;19: e44981.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014;510:162–6.

    Article  CAS  PubMed  Google Scholar 

  36. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, et al. PINK1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity. J Cell Biol. 2014;205:143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J. 2014;460:127–39.

    Article  CAS  PubMed  Google Scholar 

  38. Wong YC, Holzbaur ELF. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci USA. 2014;111:E4439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524:309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ge P, Dawson VL, Dawson TM. PINK1 and parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease. Mol Neurodegener. 2020;15:20.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sung H, Tandarich LC, Nguyen K, Hollenbeck PJ. Compartmentalized regulation of parkin-mediated mitochondrial quality control in the Drosophila nervous system in vivo. J Neurosci. 2016;36:7375–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pickrell AM, Huang C-H, Kennedy SR, Ordureau A, Sideris DP, Hoekstra JG, et al. Endogenous parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron. 2015;87:371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Van Laar VS, Arnold B, Cassady SJ, Chu CT, Burton EA, Berman SB. Bioenergetics of neurons inhibit the translocation response of parkin following rapid mitochondrial depolarization. Hum Mol Genet. 2011;20:927–40.

    Article  PubMed  Google Scholar 

  44. Cai Q, Zakaria HM, Simone A, Sheng Z-H. Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr Biol. 2012;22:545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee JJ, Sanchez-Martinez A, Zarate AM, Benincá C, Mayor U, Clague MJ, et al. Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J Cell Biol. 2018;217:1613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McWilliams TG, Prescott AR, Montava-Garriga L, Ball G, Singh F, Barini E, et al. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 2018;27:439-49.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim YY, Um J, Yoon J, Kim H, Lee D, Lee YJ, et al. Assessment of mitophagy in mt-Keima Drosophila revealed an essential role of the PINK1-parkin pathway in mitophagy induction in vivo. FASEB J. 2019;33:9742–51.

    Article  CAS  PubMed  Google Scholar 

  48. Cornelissen T, Vilain S, Vints K, Gounko N, Verstreken P, Vandenberghe W. Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. Elife. 2018;7:e35878.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Devireddy S, Liu A, Lampe T, Hollenbeck PJ. The organization of Mitochondrial quality control and life cycle in the nervous system in vivo in the absence of PINK1. J Neurosci. 2015;35:9391–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stevens DA, Lee Y, Kang HC, Lee BD, Lee Y-I, Bower A, et al. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. Proc Natl Acad Sci USA. 2015;112:11696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schwartzentruber A, Boschian C, Lopes FM, Myszczynska MA, New EJ, Beyrath J, et al. Oxidative switch drives mitophagy defects in dopaminergic parkin mutant patient neurons. Sci Rep. 2020;10:15485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bus C, Zizmare L, Feldkaemper M, Geisler S, Zarani M, Schaedler A, et al. Human dopaminergic neurons lacking PINK1 exhibit disrupted dopamine metabolism related to vitamin B6 co-factors. iScience. 2020;23:101797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441:1157–61.

    Article  CAS  PubMed  Google Scholar 

  54. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, et al. Drosophila PINK1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006;441:1162–6.

    Article  CAS  PubMed  Google Scholar 

  55. Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA. 2008;105:7070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin. Proc Natl Acad Sci. 2010;107:5018–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu W, Sun Y, Guo S, Lu B. The PINK1/parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet. 2011;20:3227–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Glauser L, Sonnay S, Stafa K, Moore DJ. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1: parkin promotes the ubiquitination of mitofusin 1. J Neurochem. 2011;118:636–45.

    Article  CAS  PubMed  Google Scholar 

  59. Chung SY, Kishinevsky S, Mazzulli JR, Graziotto J, Mrejeru A, Mosharov EV, et al. Parkin and PINK1 patient iPSC-derived midbrain dopamine neurons exhibit mitochondrial dysfunction and α-synuclein accumulation. Stem Cell Rep. 2016;7:664–77.

    Article  CAS  Google Scholar 

  60. Shaltouki A, Sivapatham R, Pei Y, Gerencser AA, Momčilović O, Rao MS, et al. Mitochondrial alterations by parkin in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem Cell Rep. 2015;4:847–59.

    Article  CAS  Google Scholar 

  61. Panicker N, Ge P, Dawson VL, Dawson TM. The cell biology of Parkinson’s disease. J Cell Biol. 2021;220: e202012095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Manzella N, Santin Y, Maggiorani D, Martini H, Douin-Echinard V, Passos JF, et al. Monoamine oxidase-A is a novel driver of stress-induced premature senescence through inhibition of parkin-mediated mitophagy. Aging Cell. 2018;17: e12811.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yu W, Gao B, Li N, Wang J, Qiu C, Zhang G, et al. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-parkin-mediated mitophagy. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1973–83.

    Article  CAS  PubMed  Google Scholar 

  64. Hoshino A, Mita Y, Okawa Y, Ariyoshi M, Iwai-Kanai E, Ueyama T, et al. Cytosolic p53 inhibits parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun. 2013;4:2308.

    Article  PubMed  Google Scholar 

  65. Song M, Gong G, Burelle Y, Gustafsson ÅB, Kitsis RN, Matkovich SJ, et al. Interdependence of parkin-mediated mitophagy and mitochondrial fission in adult mouse hearts. Circ Res. 2015;117:346–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129:154–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease: a double-edged sword. Neuron. 2002;35:419–32.

    Article  CAS  PubMed  Google Scholar 

  68. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8:382–97.

    Article  CAS  PubMed  Google Scholar 

  69. Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:S210–2.

    Article  PubMed  Google Scholar 

  70. Kannarkat GT, Boss JM, Tansey MG. The role of innate and adaptive immunity in Parkinson’s disease. J Park Dis. 2013;3:493–514.

    Google Scholar 

  71. Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE. Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2: a009381.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89:37–53.

    Article  CAS  PubMed  Google Scholar 

  74. Tran TA, Nguyen AD, Chang J, Goldberg MS, Lee J-K, Tansey MG. Lipopolysaccharide and tumor necrosis factor regulate parkin expression via nuclear factor-kappa B. PLoS ONE. 2011;6: e23660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mouton-Liger F, Rosazza T, Sepulveda-Diaz J, Ieang A, Hassoun S-M, Claire E, et al. Parkin deficiency modulates NLRP3 inflammasome activation by attenuating an A20-dependent negative feedback loop. Glia. 2018;66:1736–51.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yu J, Nagasu H, Murakami T, Hoang H, Broderick L, Hoffman HM, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci USA. 2014;111:15514–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell. 2016;164:896–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem. 2003;278:43628–35.

    Article  CAS  PubMed  Google Scholar 

  79. von Coelln R, Thomas B, Andrabi SA, Lim KL, Savitt JM, Saffary R, et al. Inclusion body formation and neurodegeneration are parkin independent in a mouse model of alpha-synucleinopathy. J Neurosci. 2006;26:3685–96.

    Article  Google Scholar 

  80. Frank-Cannon TC, Tran T, Ruhn KA, Martinez TN, Hong J, Marvin M, et al. Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J Neurosci. 2008;28:10825–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sugiura A, McLelland G, Fon EA, McBride HM. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 2014;33:2142–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abuaita BH, Schultz TL, O’Riordan MX. Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized Staphylococcus aureus. Cell Host Microbe. 2018;24:625-36.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McLelland G-L, Lee SA, McBride HM, Fon EA. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J Cell Biol. 2016;214:275–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Soubannier V, Rippstein P, Kaufman BA, Shoubridge EA, McBride HM. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS ONE. 2012;7: e52830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Soubannier V, McLelland G-L, Zunino R, Braschi E, Rippstein P, Fon EA, et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol. 2012;22:135–41.

    Article  CAS  PubMed  Google Scholar 

  86. Cadete VJJ, Deschênes S, Cuillerier A, Brisebois F, Sugiura A, Vincent A, et al. Formation of mitochondrial-derived vesicles is an active and physiologically relevant mitochondrial quality control process in the cardiac system: cardiac mitochondrial-derived vesicle formation. J Physiol. 2016;594:5343–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Williams ET, Glauser L, Tsika E, Jiang H, Islam S, Moore DJ. Parkin mediates the ubiquitination of VPS35 and modulates retromer-dependent endosomal sorting. Hum Mol Genet. 2018;27:3189–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yun SP, Kim H, Ham S, Kwon S-H, Lee GH, Shin J-H, et al. VPS35 regulates parkin substrate AIMP2 toxicity by facilitating lysosomal clearance of AIMP2. Cell Death Dis. 2017;8:e2741–e2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C, Chemali M, et al. Parkinson’s disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation. Cell. 2016;166:314–27.

    Article  CAS  PubMed  Google Scholar 

  90. Cebrián C, Zucca FA, Mauri P, Steinbeck JA, Studer L, Scherzer CR, et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun. 2014;5:3633.

    Article  PubMed  Google Scholar 

  91. Martin HL, Santoro M, Mustafa S, Riedel G, Forrester JV, Teismann P. Evidence for a role of adaptive immune response in the disease pathogenesis of the MPTP mouse model of Parkinson’s disease: MHC II Ablation Attenuates MPTP Toxicity. Glia. 2016;64:386–95.

    Article  PubMed  Google Scholar 

  92. Ryan TA, Phillips EO, Collier CL, Robinson JBA, Routledge D, Wood RE, et al. Tollip coordinates parkin-dependent trafficking of mitochondrial-derived vesicles. EMBO J. 2020;39:e102539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018;561:258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtell K, et al. Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun. 2020;11:1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Haenseler W, Zambon F, Lee H, Vowles J, Rinaldi F, Duggal G, et al. Excess α-synuclein compromises phagocytosis in iPSC-derived macrophages. Sci Rep. 2017;7:9003.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tremblay M-E, Cookson MR, Civiero L. Glial phagocytic clearance in Parkinson’s disease. Mol Neurodegener. 2019;14:16.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ali S, Vollaard AM, Widjaja S, Surjadi C, van de Vosse E, van Dissel JT. PARK2/PACRG polymorphisms and susceptibility to typhoid and paratyphoid fever. Clin Exp Immunol. 2006;144:425–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature. 2013;501:512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mira MT, Alcaïs A, Nguyen VT, Moraes MO, Di Flumeri C, Vu HT, et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature. 2004;427:636–40.

    Article  CAS  PubMed  Google Scholar 

  100. Vergara D, Ferraro MM, Cascione M, del Mercato LL, Leporatti S, Ferretta A, et al. Cytoskeletal alterations and biomechanical properties of parkin-mutant human primary fibroblasts. Cell Biochem Biophys. 2015;71:1395–404.

    Article  CAS  PubMed  Google Scholar 

  101. Lim MK, Kawamura T, Ohsawa Y, Ohtsubo M, Asakawa S, Takayanagi A, et al. Parkin interacts with LIM Kinase 1 and reduces its cofilin-phosphorylation activity via ubiquitination. Exp Cell Res. 2007;313:2858–74.

    Article  CAS  PubMed  Google Scholar 

  102. Yang F, Jiang Q, Zhao J, Ren Y, Sutton MD, Feng J. Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem. 2005;280:17154–62.

    Article  CAS  PubMed  Google Scholar 

  103. Guttenplan KA, Weigel MK, Prakash P, Wijewardhane PR, Hasel P, Rufen-Blanchette U, et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature. 2021;599:102–7.

    Article  CAS  PubMed  Google Scholar 

  104. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kano M, Takanashi M, Oyama G, Yoritaka A, Hatano T, Shiba-Fukushima K, et al. Reduced astrocytic reactivity in human brains and midbrain organoids with PRKN mutations. NPJ Parkinsons Dis. 2020;6:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yun SP, Kam T-I, Panicker N, Kim S, Oh Y, Park J-S, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24:931–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sonninen T-M, Hämäläinen RH, Koskuvi M, Oksanen M, Shakirzyanova A, Wojciechowski S, et al. Metabolic alterations in Parkinson’s disease astrocytes. Sci Rep. 2020;10:14474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu J, Dobbs N, Yang K, Yan N. Interferon-independent activities of mammalian STING mediate antiviral response and tumor immune evasion. Immunity. 2020;53:115-126.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yamashiro LH, Wilson SC, Morrison HM, Karalis V, Chung J-YJ, Chen KJ, et al. Interferon-independent STING signaling promotes resistance to HSV-1 in vivo. Nat Commun. 2020;11:3382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nassour J, Radford R, Correia A, Fusté JM, Schoell B, Jauch A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature. 2019;565:659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Margolis SR, Wilson SC, Vance RE. Evolutionary origins of cGAS-STING signaling. Trends Immunol. 2017;38:733–43.

    Article  CAS  PubMed  Google Scholar 

  112. Brault M, Olsen TM, Martinez J, Stetson DB, Oberst A. Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling. J Immunol. 2018;200:2748–56.

    Article  CAS  PubMed  Google Scholar 

  113. Glück S, Guey B, Gulen MF, Wolter K, Kang T-W, Schmacke NA, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol. 2017;19:1061–70.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L, Villunger A, et al. Signalling strength determines proapoptotic functions of STING. Nat Commun. 2017;8:427.

    Article  PubMed  PubMed Central  Google Scholar 

  115. San Luciano M, Tanner CM, Meng C, Marras C, Goldman SM, Lang AE, et al. Nonsteroidal anti-inflammatory use and lrrk2 Parkinson’s disease penetrance. Mov Disord. 2020;35:1755–64.

    Article  CAS  PubMed  Google Scholar 

  116. Gagne JJ, Power MC. Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology. 2010;74:995–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wahner AD, Bronstein JM, Bordelon YM, Ritz B. Nonsteroidal anti-inflammatory drugs may protect against Parkinson disease. Neurology. 2007;69:1836–42.

    Article  CAS  PubMed  Google Scholar 

  118. Gao X, Chen H, Schwarzschild MA, Ascherio A. Use of ibuprofen and risk of Parkinson disease. Neurology. 2011;76:863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93:884S-S890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Finck BN. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116:615–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hu Q, Wang G. Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegener. 2016;5:14.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Malpartida AB, Williamson M, Narendra DP, Wade-Martins R, Ryan BJ. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: from mechanism to therapy. Trends Biochem Sci. 2021;46:329–43.

    Article  CAS  PubMed  Google Scholar 

  123. Clark J, Reddy S, Zheng K, Betensky RA, Simon DK. Association of PGC-1alphapolymorphisms with age of onset and risk of Parkinson’s disease. BMC Med Genet. 2011;12:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Su X, Chu Y, Kordower JH, Li B, Cao H, Huang L, et al. PGC-1α promoter methylation in Parkinson’s disease. PLoS ONE. 2015;10: e0134087.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pacelli C, De Rasmo D, Signorile A, Grattagliano I, di Tullio G, D’Orazio A, et al. Mitochondrial defect and PGC-1α dysfunction in parkin-associated familial Parkinson’s disease. Biochim Biophys Acta. 2011;1812:1041–53.

    Article  CAS  PubMed  Google Scholar 

  126. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127:397–408.

    Article  CAS  PubMed  Google Scholar 

  127. Shin J-H, Ko HS, Kang H, Lee Y, Lee Y-I, Pletinkova O, et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144:689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee Y, Stevens DA, Kang S-U, Jiang H, Lee Y-I, Ko HS, et al. PINK1 primes parkin-mediated ubiquitination of PARIS in dopaminergic neuronal survival. Cell Rep. 2017;18:918–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pirooznia SK, Yuan C, Khan MR, Karuppagounder SS, Wang L, **ong Y, et al. PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency. Mol Neurodegener. 2020;15:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Siddiqui A, Bhaumik D, Chinta SJ, Rane A, Rajagopalan S, Lieu CA, et al. Mitochondrial quality control via the PGC1α-TFEB signaling pathway is compromised by parkin Q311X mutation but independently restored by rapamycin. J Neurosci. 2015;35:12833–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RAV, et al. PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med. 2012;4:142ra97.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Martini-Stoica H, Xu Y, Ballabio A, Zheng H. The autophagy-lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci. 2016;39:221–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Brahmachari S, Lee S, Kim S, Yuan C, Karuppagounder SS, Ge P, et al. Parkin interacting substrate zinc finger protein 746 is a pathological mediator in Parkinson’s disease. Brain. 2019;142:2380–401.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kim H, Shin J-Y, Jo A, Kim JH, Park S, Choi J-Y, et al. Parkin interacting substrate phosphorylation by c-Abl drives dopaminergic neurodegeneration. Brain. 2021;144:3674–91.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Panicker N, Kam T-I, Wang H, Neifert S, Chou S-C, Kumar M, et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron. 2022;110:2422-37.e9.

    Article  CAS  PubMed  Google Scholar 

  136. Kumar M, Acevedo-Cintrón J, Jhaldiyal A, Wang H, Andrabi SA, Eacker S, et al. Defects in mitochondrial biogenesis drive mitochondrial alterations in parkin-deficient human dopamine neurons. Stem Cell Rep. 2020;15:629–45.

    Article  CAS  Google Scholar 

  137. Nishida T, Yamada Y. RNF4-mediated SUMO-targeted ubiquitination relieves PARIS/ZNF746-mediated transcriptional repression. Biochem Biophys Res Commun. 2020;526:110–6.

    Article  CAS  PubMed  Google Scholar 

  138. Jo A, Lee Y, Kam T-I, Kang S-U, Neifert S, Karuppagounder SS, et al. PARIS farnesylation prevents neurodegeneration in models of Parkinson’s disease. Sci Transl Med. 2021;13:eaax8891.

    Article  CAS  PubMed  Google Scholar 

  139. Clark J, Silvaggi JM, Kiselak T, Zheng K, Clore EL, Dai Y, et al. Pgc-1α overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf. PLoS ONE. 2012;7: e48925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ciron C, Lengacher S, Dusonchet J, Aebischer P, Schneider BL. Sustained expression of PGC-1 in the rat nigrostriatal system selectively impairs dopaminergic function. Hum Mol Genet. 2012;21:1861–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Johnson BN, Berger AK, Cortese GP, Lavoie MJ. The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc Natl Acad Sci USA. 2012;109:6283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bernardini JP, Brouwer JM, Tan IK, Sandow JJ, Huang S, Stafford CA, et al. Parkin inhibits BAK and BAX apoptotic function by distinct mechanisms during mitophagy. EMBO J. 2019;38: e99916.

    Article  PubMed  Google Scholar 

  143. Ham SJ, Lee D, Yoo H, Jun K, Shin H, Chung J. Decision between mitophagy and apoptosis by parkin via VDAC1 ubiquitination. Proc Natl Acad Sci. 2020;117:4281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. McLelland G-L, Soubannier V, Chen CX, McBride HM, Fon EA. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 2014;33:282–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Carroll RG, Hollville E, Martin SJ. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep. 2014;9:1538–53.

    Article  CAS  PubMed  Google Scholar 

  146. Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171:2000–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee Y, Karuppagounder SS, Shin J-H, Lee Y-I, Ko HS, Swing D, et al. Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat Neurosci. 2013;16:1392–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Trempe J-F, Sauve V, Grenier K, Seirafi M, Tang MY, Menade M, et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science. 2013;340:1451–5.

    Article  CAS  PubMed  Google Scholar 

  149. Seirafi M, Kozlov G, Gehring K. Parkin structure and function. FEBS J. 2015;282:2076–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tang MY, Vranas M, Krahn AI, Pundlik S, Trempe J-F, Fon EA. Structure-guided mutagenesis reveals a hierarchical mechanism of parkin activation. Nat Commun. 2017;8:14697.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Sauvé V, Sung G, Soya N, Kozlov G, Blaimschein N, Miotto LS, et al. Mechanism of parkin activation by phosphorylation. Nat Struct Mol Biol. 2018;25:623–30.

    Article  PubMed  Google Scholar 

  152. Aguirre JD, Dunkerley KM, Mercier P, Shaw GS. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. Proc Natl Acad Sci. 2017;114:298–303.

    Article  CAS  PubMed  Google Scholar 

  153. Miller S, Muqit MMK. Therapeutic approaches to enhance PINK1/parkin mediated mitophagy for the treatment of Parkinson’s disease. Neurosci Lett. 2019;705:7–13.

    Article  CAS  PubMed  Google Scholar 

  154. Wauer T, Komander D. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 2013;32:2099–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Panicker N, Dawson VL, Dawson TM. Activation mechanisms of the E3 ubiquitin ligase parkin. Biochem J. 2017;474:3075–86.

    Article  CAS  PubMed  Google Scholar 

  156. Hertz NT, Berthet A, Sos ML, Thorn KS, Burlingame AL, Nakamura K, et al. A neo-substrate that amplifies catalytic activity of Parkinson’s-disease-related kinase PINK1. Cell. 2013;154:737–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Osgerby L, Lai Y-C, Thornton PJ, Amalfitano J, Le Duff CS, Jabeen I, et al. Kinetin riboside and its ProTides Aativate the Parkinson’s Disease Associated PTEN-Induced Putative Kinase 1 (PINK1) independent of mitochondrial depolarization. J Med Chem. 2017;60:3518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, et al. Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson’s disease. J Neurosci. 2011;31:157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ko HS, Lee Y, Shin J-H, Karuppagounder SS, Gadad BS, Koleske AJ, et al. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proc Natl Acad Sci USA. 2010;107:16691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM, Ko HS. The c-Abl inhibitor, Nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci Rep. 2015;4:4874.

    Article  Google Scholar 

  161. Lonskaya I, Desforges NM, Hebron ML, Moussa CE-H. Ubiquitination increases parkin activity to promote autophagic α-synuclein clearance. PLoS ONE. 2013;8:e83914.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CE-H. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med. 2013;5:1247–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Simuni T, Fiske B, Merchant K, Coffey CS, Klingner E, Caspell-Garcia C, et al. Efficacy of nilotinib in patients with moderately advanced Parkinson disease: a randomized clinical trial. JAMA Neurol. 2021;78:312.

    Article  PubMed  Google Scholar 

  164. Pagan Fernando L, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, et al. Nilotinib effects on safety, tolerability, and potential biomarkers in Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 2020;77:309.

    Article  CAS  PubMed  Google Scholar 

  165. Fowler AJ, Hebron M, Missner AA, Wang R, Gao X, Kurd-Misto BT, et al. Multikinase Abl/DDR/Src inhibition produces optimal effects for tyrosine kinase inhibition in neurodegeneration. Drugs RD. 2019;19:149–66.

    Article  CAS  Google Scholar 

  166. Pagan FL, Wilmarth B, Torres-Yaghi Y, Hebron ML, Mulki S, Ferrante D, et al. Long-term safety and clinical effects of nilotinib in Parkinson’s disease. Mov Disord. 2021;36:740–9.

    Article  CAS  PubMed  Google Scholar 

  167. Fowler AJ, Ahn J, Hebron M, Chiu T, Ayoub R, Mulki S, et al. CSF microRNAs reveal impairment of angiogenesis and autophagy in Parkinson disease. Neurol Genet. 2021;7: e633.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Imam SZ, Trickler W, Kimura S, Binienda ZK, Paule MG, Slikker W, et al. Neuroprotective efficacy of a new brain-penetrating C-Abl inhibitor in a murine Parkinson’s disease model. PLoS ONE. 2013;8: e65129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ko HS, Lee Y, Shin J-H, Karuppagounder SS, Gadad BS, Koleske AJ, et al. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proc Natl Acad Sci. 2010;107:16691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Durcan TM, Tang MY, Pérusse JR, Dashti EA, Aguileta MA, McLelland G, et al. usp 8 regulates mitophagy by removing k 6-linked ubiquitin conjugates from parkin. EMBO J. 2014;33:2473–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Durcan TM, Fon EA. Mutant ataxin-3 promotes the autophagic degradation of parkin. Autophagy. 2011;7:233–4.

    Article  PubMed  Google Scholar 

  172. Durcan TM, Kontogiannea M, Bedard N, Wing SS, Fon EA. Ataxin-3 deubiquitination is coupled to parkin ubiquitination via E2 ubiquitin-conjugating enzyme*. J Biol Chem. 2012;287:531–41.

    Article  CAS  PubMed  Google Scholar 

  173. Chung KKK. S-Nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science. 2004;304:1328–31.

    Article  CAS  PubMed  Google Scholar 

  174. Oh C-K, Sultan A, Platzer J, Dolatabadi N, Soldner F, McClatchy DB, et al. S-Nitrosylation of PINK1 attenuates PINK1/parkin-dependent mitophagy in hiPSC-based Parkinson’s Ddsease models. Cell Rep. 2017;21:2171–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yao D, Gu Z, Nakamura T, Shi Z-Q, Ma Y, Gaston B, et al. Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci. 2004;101:10810–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ozawa K, Tsumoto H, Miura Y, Yamaguchi J, Iguchi-Ariga SMM, Sakuma T, et al. DJ-1 is indispensable for the S-nitrosylation of parkin, which maintains function of mitochondria. Sci Rep. 2020;10:4377.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wilkaniec A, Lenkiewicz AM, Czapski GA, Jęśko HM, Hilgier W, Brodzik R, et al. Extracellular alpha-synuclein oligomers induce parkin S-nitrosylation: relevance to sporadic Parkinson’s disease etiopathology. Mol Neurobiol. 2019;56:125–40.

    Article  CAS  PubMed  Google Scholar 

  178. Sunico CR, Nakamura T, Rockenstein E, Mante M, Adame A, Chan S, et al. S-Nitrosylation of parkin as a novel regulator of p53-mediated neuronal cell death in sporadic Parkinson’s disease. Mol Neurodegener. 2013;8:29.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Um JW, Chung KC. Functional modulation of parkin through physical interaction with SUMO-1. J Neurosci Res. 2006;84:1543–54.

    Article  CAS  PubMed  Google Scholar 

  180. Vandiver MS, Paul BD, Xu R, Karuppagounder S, Rao F, Snowman AM, et al. Sulfhydration mediates neuroprotective actions of parkin. Nat Commun. 2013;4:1626.

    Article  PubMed  Google Scholar 

  181. Choo YS, Vogler G, Wang D, Kalvakuri S, Iliuk A, Tao WA, et al. Regulation of parkin and PINK1 by neddylation. Hum Mol Genet. 2012;21:2514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Um JW, Han KA, Im E, Oh Y, Lee K, Chung KC. Neddylation positively regulates the ubiquitin E3 ligase activity of parkin. J Neurosci Res. 2012;90:1030–42.

    Article  CAS  PubMed  Google Scholar 

  183. Moskal N, Riccio V, Bashkurov M, Taddese R, Datti A, Lewis PN, et al. ROCK inhibitors upregulate the neuroprotective parkin-mediated mitophagy pathway. Nat Commun. 2020;11:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Saal K-A, Galter D, Roeber S, Bähr M, Tönges L, Lingor P. Altered expression of growth associated protein-43 and Rho kinase in human patients with Parkinson’s disease. Brain Pathol Zurich Switz. 2017;27:13–25.

    Article  CAS  Google Scholar 

  185. Tonges L, Frank T, Tatenhorst L, Saal KA, Koch JC, Szego EM, et al. Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson’s disease. Brain. 2012;135:3355–70.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Koch JC, Tatenhorst L, Roser A-E, Saal K-A, Tönges L, Lingor P. ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol Ther. 2018;189:1–21.

    Article  CAS  PubMed  Google Scholar 

  187. Hasson SA, Kane LA, Yamano K, Huang C-H, Sliter DA, Buehler E, et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature. 2013;504:291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ivatt RM, Sanchez-Martinez A, Godena VK, Brown S, Ziviani E, Whitworth AJ. Genome-wide RNAi screen identifies the Parkinson disease GWAS risk locus SREBF1 as a regulator of mitophagy. Proc Natl Acad Sci U S A. 2014;111:8494–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sekine S, Wang C, Sideris DP, Bunker E, Zhang Z, Youle RJ. Reciprocal roles of Tom7 and OMA1 during mitochondrial import and activation of PINK1. Mol Cell. 2019;73:1028-43.e5.

    Article  CAS  PubMed  Google Scholar 

  190. Liu X, Hebron M, Shi W, Lonskaya I, Moussa CE-H. Ubiquitin specific protease-13 independently regulates parkin ubiquitination and alpha-synuclein clearance in alpha-synucleinopathies. Hum Mol Genet. 2019;28:548–60.

    Article  CAS  PubMed  Google Scholar 

  191. Khandelwal PJ, Dumanis SB, Feng LR, Maguire-Zeiss K, Rebeck G, Lashuel HA, et al. Parkinson-related parkin reduces α-Synuclein phosphorylation in a gene transfer model. Mol Neurodegener. 2010;5:47.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Lonskaya I, Hebron ML, Algarzae NK, Desforges N, Moussa CE-H. Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson’s disease. Neuroscience. 2013;232:90–105.

    Article  CAS  PubMed  Google Scholar 

  193. Herman AM, Moussa CE-H. The ubiquitin ligase parkin modulates the execution of autophagy. Autophagy. 2011;7:919–21.

    Article  PubMed  Google Scholar 

  194. Khandelwal PJ, Herman AM, Hoe H-S, Rebeck GW, Moussa CE-H. Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum Mol Genet. 2011;20:2091–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 2014;510:370–5.

    Article  CAS  PubMed  Google Scholar 

  196. Tsefou E, Walker AS, Clark EH, Hicks AR, Luft C, Takeda K, et al. Investigation of USP30 inhibition to enhance parkin-mediated mitophagy: tools and approaches. Biochem J. 2021;478:4099–118.

    Article  CAS  PubMed  Google Scholar 

  197. Cornelissen T, Haddad D, Wauters F, Van Humbeeck C, Mandemakers W, Koentjoro B, et al. The deubiquitinase USP15 antagonizes parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet. 2014;23:5227–42.

    Article  CAS  PubMed  Google Scholar 

  198. Pirooznia SK, Wang H, Panicker N, Kumar M, Neifert S, Dar MA, et al. Deubiquitinase CYLD acts as a negative regulator of dopamine neuron survival in Parkinson’s disease. Sci Adv. 2022;8:eabh1824.

    Article  CAS  PubMed  Google Scholar 

  199. Dobson-Stone C, Hallupp M, Shahheydari H, Ragagnin AMG, Chatterton Z, Carew-Jones F, et al. CYLD is a causative gene for frontotemporal dementia-amyotrophic lateral sclerosis. Brain. 2020;143:783–99.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Dobson-Stone C, Luty AA, Thompson EM, Blumbergs P, Brooks WS, Short CL, et al. Frontotemporal dementia-amyotrophic lateral sclerosis syndrome locus on chromosome 16p12.1–q12.2: genetic, clinical and neuropathological analysis. Acta Neuropathol (Berl). 2013;125:523–33.

    Article  CAS  PubMed  Google Scholar 

  201. Georges A, Gros P, Fodil N. USP15: a review of its implication in immune and inflammatory processes and tumor progression. Genes Immun. 2021;22:12–23.

    Article  CAS  PubMed  Google Scholar 

  202. Yeh H-M, Yu C-Y, Yang H-C, Ko S-H, Liao C-L, Lin Y-L. Ubiquitin-specific protease 13 regulates IFN signaling by stabilizing STAT1. J Immunol. 2013;191:3328–36.

    Article  CAS  PubMed  Google Scholar 

  203. Riccio V, Demers N, Hua R, Vissa M, Cheng DT, Strilchuk AW, et al. Deubiquitinating enzyme USP30 maintains basal peroxisome abundance by regulating pexophagy. J Cell Biol. 2019;218:798–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chaudhary S, Behari M, Dihana M, Swaminath PV, Govindappa ST, Jayaram S, et al. Parkin mutations in familial and sporadic Parkinson’s disease among Indians. Parkinsonism Relat Disord. 2006;12:239–45.

    Article  PubMed  Google Scholar 

  205. Klein C, Lohmann K. Parkinson disease(s): is “parkin disease” a distinct clinical entity? Neurology. 2009;72:106–7.

    Article  PubMed  Google Scholar 

  206. Klein C, Schlossmacher MG. Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder. Neurology. 2007;69:2093–104.

    Article  PubMed  Google Scholar 

  207. Pilcher H. Parkin implicated in sporadic Parkinson’s disease. Lancet Neurol. 2005;4:798.

    Article  PubMed  Google Scholar 

  208. Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14:463–77.

    Article  CAS  PubMed  Google Scholar 

  209. Tran J, Anastacio H, Bardy C. Genetic predispositions of Parkinson’s disease revealed in patient-derived brain cells. NPJ Parkinsons Dis. 2020;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Brahmachari S, Ge P, Lee SH, Kim D, Karuppagounder SS, Kumar M, et al. Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration. J Clin Invest. 2016;126:2970–88.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Noelle Burgess for assistance in creating the figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valina L. Dawson or Ted M. Dawson.

Ethics declarations

Funding

This work was supported by grants from the National Institutes of Health/National Institute of Neurological Disorders and Stroke (NS38377, NS097049, and NS102035), and the JPB Foundation.

Conflicts of interest/competing interests

Consulting: T.M.D has received personal compensation for consulting with Sun Pharma Advanced Research Company; T.M.D. is a consultant for Mitokinin; T.M.D. and V.L.D. are consultants to Inhibikase Therapeutics Inc.; T.M.D. serves on the Board of Directors and is compensated for his roles as a consultant and interim Chief Scientific Officer of Valted Seq Inc.; V.L.D. serves on the Board of Directors and is compensated for her role as interim Chief Executive Officer of Valted Seq Inc. T.M.D. was a paid consultant and advisory board member to DONG-A ST; T.M.D. and V.L.D. received personal compensation for consulting and serving on a scientific advisory board with Hopstem, Inc. These arrangements have been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies. Stock Ownership: T.M.D. owns stock options in American Gene Technologies International Inc.; T.M.D owns stock and stock options in Mitokinin; T.M.D. and V.L.D. own stock options in Inhibikase Therapeutics Inc.; T.M.D. and V.L.D. are founders of Valted, LLC and holds an ownership equity interest in the company. T.M.D. and V.L.D. are inventors of technology of Neuraly, Inc. that has optioned from Johns Hopkins University. T.M.D. and V.L.D. are founders of, and holds shares of stock options as well as equity in, Neuraly, Inc., which is now a subsidiary of D & D Pharmatech; T.M.D. and V.L.D. holds shares of stock options as well as equity in D & D Pharmatech; T.M.D. and V.L.D. are founders of and hold equity in Valted Seq Inc.; these arrangements have been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies. J.P. and N.P. have no conflicts of interest or disclosures.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

No original data or supplemental materials were generated in the process of writing this manuscript. 

Code availability

Not applicable.

Author contributions

JP reviewed the literature, conceptualized and developed the original draft of the manuscript, and participated in reviewing as well as editing the manuscript. NP participated in the literature searching and conceptualizing, reviewing, and editing the manuscript. TMD and VLD both participated in reviewing, editing, and conceptualizing the manuscript. All authors have read and approved the final version of the manuscript, and they agree to be accountable for the work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, J., Panicker, N., Dawson, V.L. et al. Cell Biology of Parkin: Clues to the Development of New Therapeutics for Parkinson’s Disease. CNS Drugs 36, 1249–1267 (2022). https://doi.org/10.1007/s40263-022-00973-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-022-00973-7

Navigation