Log in

Current Principles in the Management of Drug-Resistant Epilepsy

  • Current Opinion
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Drug-resistant epilepsy is associated with poor health outcomes and increased economic burden. In the last three decades, various new antiseizure medications have been developed, but the proportion of people with drug-resistant epilepsy remains relatively unchanged. Develo** strategies to address drug-resistant epilepsy is essential. Here, we define drug-resistant epilepsy and emphasize its relationship to the conceptualization of epilepsy as a symptom complex, delineate clinical risk factors, and characterize mechanisms based on current knowledge. We address the importance of ruling out pseudoresistance and consider the impact of nonadherence on determining whether an individual has drug-resistant epilepsy. We then review the principles of epilepsy drug therapy and briefly touch upon newly approved and experimental antiseizure medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fiest KM, Sauro KM, Wiebe S, et al. Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology. 2017;88(3):296–303.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V. The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia. 2018;59(12):2179–93.

    Article  PubMed  Google Scholar 

  3. Xue-** W, Hai-Jiao W, Li-Na Z, Xu D, Ling L. Risk factors for drug-resistant epilepsy: a systematic review and meta-analysis. Medicine (Baltimore). 2019;98(30): e16402.

    Article  CAS  Google Scholar 

  4. Hernández-Ronquillo L, Adams S, Ballendine S, Téllez-Zenteno JF. Epilepsy in an elderly population: classification, etiology and drug resistance. Epilepsy Res. 2018;140:90–4.

    Article  PubMed  Google Scholar 

  5. Sultana B, Panzini M-A, Carpentier AV, et al. Incidence and prevalence of drug-resistant epilepsy: a systematic review and meta-analysis. Neurology. 2021;96(17):805–17.

    Article  PubMed  Google Scholar 

  6. Mohanraj R, Norrie J, Stephen LJ, Kelly K, Hitiris N, Brodie MJ. Mortality in adults with newly diagnosed and chronic epilepsy: a retrospective comparative study. Lancet Neurol. 2006;5(6):481–7.

    Article  PubMed  Google Scholar 

  7. Lawn ND, Bamlet W, Radhakrishnan K, O’Brien P, So EL. Injuries due to seizures in persons with epilepsy: a population-based study. Neurology. 2004;63(9):1565–70.

    Article  CAS  PubMed  Google Scholar 

  8. McCagh J, Fisk JE, Baker GA. Epilepsy, psychosocial and cognitive functioning. Epilepsy Res. 2009;86(1):1–14.

    Article  PubMed  Google Scholar 

  9. Akdemir V, Sut N, Guldiken B. Factors affecting the quality of life in drug-resistant epilepsy patients. Acta Neurol Belg. 2016;116(4):513–8.

    Article  PubMed  Google Scholar 

  10. Ridsdale L, Wojewodka G, Robinson E, et al. Characteristics associated with quality of life among people with drug-resistant epilepsy. J Neurol. 2017;264(6):1174–84.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cramer JA, Wang ZJ, Chang E, et al. Healthcare utilization and costs in adults with stable and uncontrolled epilepsy. Epilepsy Behav. 2014;31:356–62.

    Article  PubMed  Google Scholar 

  12. Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies [published correction appears in Epilepsia. 2010;51(9):1922]. Epilepsia. 2010;51(6):1069–77. https://doi.org/10.1111/j.1528-1167.2009.02397.x

  13. Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med. 2011;365(10):919–26.

    Article  CAS  PubMed  Google Scholar 

  14. Nair DR. Management of drug-resistant epilepsy. Continuum (Minneap Minn). 2016;22(1):157–72.

    PubMed  Google Scholar 

  15. Arts WF, Brouwer OF, Peters AB, et al. Course and prognosis of childhood epilepsy: 5-year follow-up of the Dutch study of epilepsy in childhood. Brain. 2004;127(8):1774–84.

    Article  PubMed  Google Scholar 

  16. Geerts A, Arts WF, Stroink H, et al. Course and outcome of childhood epilepsy: a 15-year follow-up of the Dutch Study of Epilepsy in Childhood. Epilepsia. 2010;51(7):1189–97.

    Article  PubMed  Google Scholar 

  17. Chen Z, Brodie MJ, Liew D, Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 2018;75(3):279–86.

    Article  PubMed  Google Scholar 

  18. Hao X-T, Wong IS, Kwan P. Interrater reliability of the international consensus definition of drug-resistant epilepsy: a pilot study. Epilepsy Behav. 2011;22(2):388–90.

    Article  PubMed  Google Scholar 

  19. Kwan P, Brodie MJ. Definition of refractory epilepsy: defining the indefinable? Lancet Neurol. 2010;9(1):27–9.

    Article  PubMed  Google Scholar 

  20. Shlobin NA, Sander JW. Learning from the comorbidities of epilepsy. Curr Opin Neurol. 2022;35(2):175–80.

    Article  PubMed  Google Scholar 

  21. Keezer MR, Sisodiya SM, Sander JW. Comorbidities of epilepsy: current concepts and future perspectives. Lancet Neurol. 2016;15(1):106–15.

    Article  PubMed  Google Scholar 

  22. Neligan A, Hauser WA, Sander JW. The epidemiology of the epilepsies. Handb Clin Neurol. 2012;107:113–33.

    Article  PubMed  Google Scholar 

  23. Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet. 2019;393(10172):689–701.

    Article  PubMed  Google Scholar 

  24. Fisher RS, Boas WVE, Blume W, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46(4):470–2.

    Article  PubMed  Google Scholar 

  25. England MJ, Liverman CT, Schultz AM, Strawbridge LM. Epilepsy across the spectrum: promoting health and understanding. A summary of the Institute of Medicine report. Epilepsy Behav. 2012;25(2):266–76.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sillanpää M, Schmidt D. Early seizure frequency and aetiology predict long-term medical outcome in childhood-onset epilepsy. Brain. 2009;132(4):989–98.

    Article  PubMed  Google Scholar 

  27. Ramos-Lizana J, Aguilera-López P, Aguirre-Rodríguez J, Cassinello-García E. Response to sequential treatment schedules in childhood epilepsy: risk for development of refractory epilepsy. Seizure. 2009;18(9):620–4.

    Article  CAS  PubMed  Google Scholar 

  28. Karaoğlu P, Yiş U, Polat Aİ, Ayanoğlu M, Hiz AS. Clinical predictors of drug-resistant epilepsy in children. Turk J Med Sci. 2021;51(3):1249–52.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Boonluksiri P, Visuthibhan A, Katanyuwong K. Clinical prediction rule of drug resistant epilepsy in children. J Epilepsy Res. 2015;5(2):84.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Picot MC, Baldy-Moulinier M, Daurès JP, Dujols P, Crespel A. The prevalence of epilepsy and pharmacoresistant epilepsy in adults: a population-based study in a Western European country. Epilepsia. 2008;49(7):1230–8.

    Article  PubMed  Google Scholar 

  31. Gilioli I, Vignoli A, Visani E, et al. Focal epilepsies in adult patients attending two epilepsy centers: classification of drug-resistance, assessment of risk factors, and usefulness of “new” antiepileptic drugs. Epilepsia. 2012;53(4):733–40.

    Article  PubMed  Google Scholar 

  32. Roy PL, Ronquillo LH, Ladino LD, Tellez-Zenteno JF. Risk factors associated with drug resistant focal epilepsy in adults: a case control study. Seizure. 2019;73:46–50.

    Article  PubMed  Google Scholar 

  33. Jeong A, Nakagawa JA, Wong M. Predictors of drug-resistant epilepsy in tuberous sclerosis complex. J Child Neurol. 2017;32(14):1092–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gelisse P, Genton P, Thomas P, Rey M, Samuelian J, Dravet C. Clinical factors of drug resistance in juvenile myoclonic epilepsy. J Neurol Neurosurg Psychiatry. 2001;70(2):240–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Delen D, Davazdahemami B, Eryarsoy E, Tomak L, Valluru A. Using predictive analytics to identify drug-resistant epilepsy patients. Health Inform J. 2020;26(1):449–60.

    Article  Google Scholar 

  36. An S, Malhotra K, Dilley C, et al. Predicting drug-resistant epilepsy: a machine learning approach based on administrative claims data. Epilepsy Behav. 2018;89:118–25.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Semah F, Picot M-C, Adam C, et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology. 1998;51(5):1256–62.

    Article  CAS  PubMed  Google Scholar 

  38. Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020;72(3):606–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sisodiya SM. Mechanisms of antiepileptic drug resistance. Curr Opin Neurol. 2003;16(2):197–201.

    Article  CAS  PubMed  Google Scholar 

  40. Margineanu DG, Klitgaard H. Mechanisms of drug resistance in epilepsy: relevance for antiepileptic drug discovery. Expert Opin Drug Discov. 2009;4(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  41. Dalic L, Cook MJ. Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr Dis Treat. 2016;12:2605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang F, Hartz A, Bauer B. Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol. 2017;8:301.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shorvon WL, Schmidt D. Mechanisms of drug resistance and tolerance. In: Shorvon S, Perucca E, Engel J (eds) The treatment of epilepsy. 2015. https://doi.org/10.1002/9781118936979.ch7

  44. Rogawski MA, Löscher W, Rho JM. Mechanisms of action of antiseizure drugs and the ketogenic diet. Cold Spring Harbor Perspect Med. 2016;6(5): a022780.

    Article  CAS  Google Scholar 

  45. Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain. 2006;129(1):18–35.

    Article  PubMed  Google Scholar 

  46. Remy S, Gabriel S, Urban BW, et al. A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol. 2003;53(4):469–79.

    Article  CAS  PubMed  Google Scholar 

  47. Remy S, Urban BW, Elger CE, Beck H. Anticonvulsant pharmacology of voltage-gated Na+ channels in hippocampal neurons of control and chronically epileptic rats. Eur J Neurosci. 2003;17(12):2648–58.

    Article  PubMed  Google Scholar 

  48. Schaub C, Uebachs M, Beck H. Diminished response of CA1 neurons to antiepileptic drugs in chronic epilepsy. Epilepsia. 2007;48(7):1339–50.

    Article  CAS  PubMed  Google Scholar 

  49. Catterall WA. Sodium channel mutations and epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. 4th edn. Bethesda, MD: National Center for Biotechnology Information (US); 2012.

  50. Kaplan DI, Isom LL, Petrou S. Role of sodium channels in epilepsy. Cold Spring Harbor Perspect Med. 2016;6(6): a022814.

    Article  CAS  Google Scholar 

  51. Rusconi R, Combi R, Cestèle S, et al. A rescuable folding defective Nav1.1 (SCN1A) sodium channel mutant causes GEFS+: common mechanism in Nav1.1 related epilepsies? Hum Mutat. 2009;30(7):E747–60.

    Article  PubMed  Google Scholar 

  52. Rusconi R, Scalmani P, Cassulini RR, et al. Modulatory proteins can rescue a trafficking defective epileptogenic Nav1.1 Na+ channel mutant. J Neurosci. 2007;27(41):11037–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lucas PT, Meadows LS, Nicholls J, Ragsdale DS. An epilepsy mutation in the β1 subunit of the voltage-gated sodium channel results in reduced channel sensitivity to phenytoin. Epilepsy Res. 2005;64(3):77–84.

    Article  CAS  PubMed  Google Scholar 

  54. Sheilabi MA, Takeshita LY, Sims EJ, Falciani F, Princivalle AP. The sodium channel B4-subunits are dysregulated in temporal lobe epilepsy drug-resistant patients. Int J Mol Sci. 2020;21(8):2955.

    Article  CAS  PubMed Central  Google Scholar 

  55. Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflügers Arch. 2010;460(2):395–403.

    Article  CAS  PubMed  Google Scholar 

  56. Cain SM, Snutch TP. Voltage-gated calcium channels in epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies. 4th edn. Bethesda, MD: National Center for Biotechnology Information (US); 2012.

  57. Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67(4):821–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vitko I, Bidaud I, Arias JM, Mezghrani A, Lory P, Perez-Reyes E. The I-II loop controls plasma membrane expression and gating of Cav3.2 T-type Ca2+ channels: a paradigm for childhood absence epilepsy mutations. J Neurosci. 2007;27(2):322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heron SE, Khosravani H, Varela D, et al. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol. 2007;62(6):560–8.

    Article  CAS  PubMed  Google Scholar 

  60. Khosravani H, Bladen C, Parker DB, Snutch TP, McRory JE, Zamponi GW. Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy. Ann Neurol. 2005;57(5):745–9.

    Article  CAS  PubMed  Google Scholar 

  61. Pizzarelli R, Cherubini E. Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast. 2011;2011: 297153.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shulga A, Thomas-Crusells J, Sigl T, et al. Posttraumatic GABAA-mediated [Ca2+] i increase is essential for the induction of brain-derived neurotrophic factor-dependent survival of mature central neurons. J Neurosci. 2008;28(27):6996–7005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci. 2021;53(6):1998–2026.

    Article  PubMed  Google Scholar 

  64. Frei MG, Zaveri HP, Arthurs S, et al. Controversies in epilepsy: debates held during the Fourth International Workshop on Seizure Prediction. Epilepsy Behav. 2010;19(1):4–16.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist. 2012;18(5):467–86.

    Article  PubMed  CAS  Google Scholar 

  66. Goetz T, Arslan A, Wisden W, Wulff P. GABAA receptors: structure and function in the basal ganglia. Progress Brain Res. 2007;160:21–41.

    Article  CAS  Google Scholar 

  67. Blair RE, Sombati S, Churn SB, DeLorenzo RJ. Epileptogenesis causes an N-methyl-d-aspartate receptor/Ca2+-dependent decrease in Ca2+/calmodulin-dependent protein kinase II activity in a hippocampal neuronal culture model of spontaneous recurrent epileptiform discharges. Eur J Pharmacol. 2008;588(1):64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Goodkin HP, Joshi S, Mtchedlishvili Z, Brar J, Kapur J. Subunit-specific trafficking of GABAA receptors during status epilepticus. J Neurosci. 2008;28(10):2527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Joshi S, Rajasekaran K, Hawk KM, et al. Phosphatase inhibition prevents the activity-dependent trafficking of GABAA receptors during status epilepticus in the young animal. Epilepsia. 2015;56(9):1355–65.

    Article  CAS  PubMed  Google Scholar 

  70. Majoie HM, de Baets M, Renier W, Lang B, Vincent A. Antibodies to voltage-gated potassium and calcium channels in epilepsy. Epilepsy Res. 2006;71(2–3):135–41.

    Article  CAS  PubMed  Google Scholar 

  71. Fonseca-Barriendos D, Frías-Soria CL, Pérez-Pérez D, Gómez-López R, Borroto Escuela DO, Rocha L. Drug-resistant epilepsy: drug target hypothesis and beyond the receptors. Epilepsia Open. 2021. https://doi.org/10.1002/epi4.12539.

    Article  PubMed  Google Scholar 

  72. Janmohamed M, Brodie MJ, Kwan P. Pharmacoresistance: epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology. 2020;168: 107790.

    Article  CAS  PubMed  Google Scholar 

  73. Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995;36(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  74. Saunders NR, Habgood MD, Møllgård K, Dziegielewska KM. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? F1000Research. 2016;5:313.

    Article  CAS  Google Scholar 

  75. Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metabol Dis. 2013;36(3):437–49.

    Article  CAS  Google Scholar 

  76. Sisodiya S, Martinian L, Scheffer G, et al. Vascular colocalization of P-glycoprotein, multidrug-resistance associated protein 1, breast cancer resistance protein and major vault protein in human epileptogenic pathologies. Neuropathol Appl Neurobiol. 2006;32(1):51–63.

    Article  CAS  PubMed  Google Scholar 

  77. Sisodiya S, Lin WR, Harding B, Squier M, Thom M. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain. 2002;125(1):22–31.

    Article  CAS  PubMed  Google Scholar 

  78. Feldmann M, Koepp M. P-glycoprotein imaging in temporal lobe epilepsy: in vivo PET experiments with the Pgp substrate [11C]-verapamil. Epilepsia. 2012;53:60–3.

    Article  PubMed  Google Scholar 

  79. Shin J-W, Chu K, Shin S, et al. Clinical applications of simultaneous PET/MR imaging using (R)-[11C]-verapamil with cyclosporin A: preliminary results on a surrogate marker of drug-resistant epilepsy. Am J Neuroradiol. 2016;37(4):600–6.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ilyas-Feldmann M, Asselin MC, Wang S, et al. P-glycoprotein overactivity in epileptogenic developmental lesions measured in vivo using (R)-[11C] verapamil PET. Epilepsia. 2020;61(7):1472–80.

    Article  CAS  PubMed  Google Scholar 

  81. Borlot F, Wither RG, Ali A, Wu N, Verocai F, Andrade DM. A pilot double-blind trial using verapamil as adjuvant therapy for refractory seizures. Epilepsy Res. 2014;108(9):1642–51.

    Article  CAS  PubMed  Google Scholar 

  82. Van Vliet E, Aronica E, Gorter J. Blood–brain barrier dysfunction, seizures and epilepsy. Semin Cell Dev Biol. 2015;38:26–34.

    Article  PubMed  CAS  Google Scholar 

  83. Zhang C, Kwan P. The concept of drug-resistant epileptogenic zone. Front Neurol. 2019;10:558.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lazarowski A, Czornyj L, Lubienieki F, Girardi E, Vazquez S, D’Giano C. ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia. 2007;48:140–9.

    Article  CAS  PubMed  Google Scholar 

  85. Ghosh C, Puvenna V, Gonzalez-Martinez J, Janigro D, Marchi N. Blood–brain barrier P450 enzymes and multidrug transporters in drug resistance: a synergistic role in neurological diseases. Curr Drug Metab. 2011;12(8):742–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pitkänen A, Buckmaster P, Galanopoulou AS, Moshé SL. Models of seizures and epilepsy. New York: Academic Press; 2017.

    Google Scholar 

  87. Rogawski MA, Johnson MR. Intrinsic severity as a determinant of antiepileptic drug refractoriness. Epilepsy Curr. 2008;8(5):127–30.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rogawski MA. The intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs. Epilepsia. 2013;54:33–40.

    Article  CAS  PubMed  Google Scholar 

  89. Löscher W, Brandt C. High seizure frequency prior to antiepileptic treatment is a predictor of pharmacoresistant epilepsy in a rat model of temporal lobe epilepsy. Epilepsia. 2010;51(1):89–97.

    Article  PubMed  CAS  Google Scholar 

  90. Schmidt D, Löscher W. New developments in antiepileptic drug resistance: an integrative view. Epilepsy Curr. 2009;9(2):47–52.

    Article  PubMed  Google Scholar 

  91. Fang M, ** Z-Q, Wu Y, Wang X-F. A new hypothesis of drug refractory epilepsy: neural network hypothesis. Med Hypotheses. 2011;76(6):871–6.

    Article  CAS  PubMed  Google Scholar 

  92. Barkovich AJ, Dobyns WB, Guerrini R. Malformations of cortical development and epilepsy. Cold Spring Harbor Perspect Med. 2015;5(5): a022392.

    Article  CAS  Google Scholar 

  93. Paolini S, Morace R, Di Gennaro G, et al. Drug-resistant temporal lobe epilepsy due to cavernous malformations. Neurosurg Focus. 2006;21(1):1–5.

    Article  Google Scholar 

  94. Wiebe S, Jette N. Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nat Rev Neurol. 2012;8(12):669–77.

    Article  CAS  PubMed  Google Scholar 

  95. Volk HA, Arabadzisz D, Fritschy J-M, Brandt C, Bethmann K, Löscher W. Antiepileptic drug-resistant rats differ from drug-responsive rats in hippocampal neurodegeneration and GABAA receptor ligand binding in a model of temporal lobe epilepsy. Neurobiol Dis. 2006;21(3):633–46.

    Article  CAS  PubMed  Google Scholar 

  96. Bethmann K, Fritschy J-M, Brandt C, Löscher W. Antiepileptic drug resistant rats differ from drug responsive rats in GABAA receptor subunit expression in a model of temporal lobe epilepsy. Neurobiol Dis. 2008;31(2):169–87.

    Article  CAS  PubMed  Google Scholar 

  97. Roitbak T, Syková E. Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia. 1999;28(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  98. Robel S, Buckingham SC, Boni JL, et al. Reactive astrogliosis causes the development of spontaneous seizures. J Neurosci. 2015;35(8):3330–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Galovic M, Baudracco I, Wright-Goff E, et al. Association of piriform cortex resection with surgical outcomes in patients with temporal lobe epilepsy. JAMA Neurol. 2019;76(6):690–700.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett. 2018;667:27–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lopez-Garcia MA, Feria-Romero IA, Fernando-Serrano H, Escalante-Santiago D, Grijalva I, Orozco-Suarez S. Genetic polymorphisms associated with antiepileptic metabolism. Front Biosci (Elite Ed). 2014;6:377–86.

    Article  Google Scholar 

  102. Depondt C, Godard P, Espel RS, Da Cruz A, Lienard P, Pandolfo M. A candidate gene study of antiepileptic drug tolerability and efficacy identifies an association of CYP2C9 variants with phenytoin toxicity. Eur J Neurol. 2011;18(9):1159–64.

    Article  CAS  PubMed  Google Scholar 

  103. Mirza N, Stevelink R, Taweel B, Koeleman BP, Marson AG. Using common genetic variants to find drugs for common epilepsies. Brain Commun. 2021;3(4):fcab287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wolking S, Moreau C, McCormack M, et al. Assessing the role of rare genetic variants in drug-resistant, non-lesional focal epilepsy. Ann Clin Transl Neurol. 2021;8(7):1376–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gambardella A, Labate A, Mumoli L, Lopes-Cendes I, Cendes F. Role of pharmacogenomics in antiepileptic drug therapy: current status and future perspectives. Curr Pharm Design. 2017;23(37):5760–5.

    Article  CAS  Google Scholar 

  106. Kobow K, Blümcke I. Epigenetics in epilepsy. Neurosci Lett. 2018;667:40–6.

    Article  CAS  PubMed  Google Scholar 

  107. Kobow K, El-Osta A, Blümcke I. The methylation hypothesis of pharmacoresistance in epilepsy. Epilepsia. 2013;54:41–7.

    Article  CAS  PubMed  Google Scholar 

  108. Haenisch S, von Rüden E-L, Wahmkow H, et al. miRNA-187-3p-mediated regulation of the KCNK10/TREK-2 potassium channel in a rat epilepsy model. ACS Chem Neurosci. 2016;7(11):1585–94.

    Article  CAS  PubMed  Google Scholar 

  109. Morris G, Reschke CR, Henshall DC. Targeting microRNA-134 for seizure control and disease modification in epilepsy. EBioMedicine. 2019;45:646–54.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bohosova J, Vajcner J, Jabandziev P, Oslejskova H, Slaby O, Aulicka S. MicroRNAs in the development of resistance to antiseizure drugs and their potential as biomarkers in pharmacoresistant epilepsy. Epilepsia. 2021;62(11):2573–88.

    Article  CAS  PubMed  Google Scholar 

  111. De Benedittis S, Fortunato F, Cava C, et al. Circulating microRNAs as potential novel diagnostic biomarkers to predict drug resistance in temporal lobe epilepsy: a pilot study. Int J Mol Sci. 2021;22(2):702.

    Article  PubMed Central  CAS  Google Scholar 

  112. Holmes M, Flaminio Z, Vardhan M, et al. Cross talk between drug-resistant epilepsy and the gut microbiome. Epilepsia. 2020;61(12):2619–28.

    Article  PubMed  Google Scholar 

  113. Chatzikonstantinou S, Gioula G, Kimiskidis VK, McKenna J, Mavroudis I, Kazis D. The gut microbiome in drug-resistant epilepsy. Epilepsia Open. 2021;6(1):28–37.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Peng A, Qiu X, Lai W, et al. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res. 2018;147:102–7.

    Article  CAS  PubMed  Google Scholar 

  115. Lee H, Lee S, Lee D-H, Kim DW. A comparison of the gut microbiota among adult patients with drug-responsive and drug-resistant epilepsy: an exploratory study. Epilepsy Res. 2021;172: 106601.

    Article  CAS  PubMed  Google Scholar 

  116. Cheraghmakani H, Rezai MS, Valadan R, et al. Ciprofloxacin for treatment of drug-resistant epilepsy. Epilepsy Res. 2021;176: 106742.

    Article  CAS  PubMed  Google Scholar 

  117. Gómez-Eguílaz M, Ramón-Trapero J, Pérez-Martínez L, Blanco J. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: a pilot study. Benef Microbes. 2018;9(6):875–81.

    Article  PubMed  Google Scholar 

  118. Friedman A, Heinemann U. Role of blood-brain barrier dysfunction in epileptogenesis. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s Basic Mechanisms of the Epilepsies. 4th edn. Bethesda, MD: National Center for Biotechnology Information (US); 2012.

  119. Bazhanova ED, Kozlov AA, Litovchenko AV. Mechanisms of drug resistance in the pathogenesis of epilepsy: role of neuroinflammation. A literature review. Brain Sci. 2021;11(5):663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Salar S, Maslarova A, Lippmann K, et al. Blood–brain barrier dysfunction can contribute to pharmacoresistance of seizures. Epilepsia. 2014;55(8):1255–63.

    Article  CAS  PubMed  Google Scholar 

  121. Lerche H. Drug-resistant epilepsy: time to target mechanisms. Nat Rev Neurol. 2020;16(11):595–6.

    Article  PubMed  Google Scholar 

  122. Baraban SC, Löscher W. What new modeling approaches will help us identify promising drug treatments? Adv Exp Med Biol. 2014;813:283–94.

    Article  PubMed  Google Scholar 

  123. Samsonsen C, Reimers A, Bråthen G, Helde G, Brodtkorb E. Nonadherence to treatment causing acute hospitalizations in people with epilepsy: an observational, prospective study. Epilepsia. 2014;55(11):e125–8.

    Article  PubMed  Google Scholar 

  124. Malek N, Heath C, Greene J. A review of medication adherence in people with epilepsy. Acta Neurol Scand. 2017;135(5):507–15.

    Article  CAS  PubMed  Google Scholar 

  125. O’Rourke G, O’Brien JJ. Identifying the barriers to antiepileptic drug adherence among adults with epilepsy. Seizure. 2017;45:160–8.

    Article  Google Scholar 

  126. Ferrari CMM, de Sousa RMC, Castro LH. Factors associated with treatment non-adherence in patients with epilepsy in Brazil. Seizure. 2013;22(5):384–9.

    Article  PubMed  Google Scholar 

  127. Getachew H, Dekema N, Awol S, Abdi A, Mohammed M. Medication adherence in epilepsy and potential risk factors associated with non adherence in tertiary care teaching hospital in southwest Ethiopia. Gaziantep Med J. 2014;20(1):59–65.

    Article  Google Scholar 

  128. Henning O, Johannessen Landmark C, Nakken KO, Lossius MI. Nonadherence to treatment regimens in epilepsy from the patient’s perspective and predisposing factors: differences between intentional and unintentional lack of adherence. Epilepsia. 2019;60(5):e58-62.

    Article  PubMed  Google Scholar 

  129. Henning O, Lossius MI, Lima M, et al. Refractory epilepsy and nonadherence to drug treatment. Epilepsia Open. 2019;4(4):618–23.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Getnet A, Woldeyohannes SM, Bekana L, et al. Antiepileptic drug nonadherence and its predictors among people with epilepsy. Behav Neurol. 2016;2016:3189108.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Paschal AM, Rush SE, Sadler T. Factors associated with medication adherence in patients with epilepsy and recommendations for improvement. Epilepsy Behav. 2014;31:346–50.

    Article  PubMed  Google Scholar 

  132. Tang F, Zhu G, Jiao Z, Ma C, Wang B. Self-reported adherence in patients with epilepsy who missed their medications and reasons for nonadherence in China. Epilepsy Behav. 2013;27(1):85–9.

    Article  PubMed  Google Scholar 

  133. Chapman SC, Horne R, Chater A, Hukins D, Smithson WH. Patients’ perspectives on antiepileptic medication: relationships between beliefs about medicines and adherence among patients with epilepsy in UK primary care. Epilepsy Behav. 2014;31:312–20.

    Article  CAS  PubMed  Google Scholar 

  134. Manjunath R, Davis KL, Candrilli SD, Ettinger AB. Association of antiepileptic drug nonadherence with risk of seizures in adults with epilepsy. Epilepsy Behav. 2009;14(2):372–8.

    Article  PubMed  Google Scholar 

  135. Paschal AM, Hawley SR, Romain TS, Ablah E. Measures of adherence to epilepsy treatment: review of present practices and recommendations for future directions. Epilepsia. 2008;49(7):1115–22.

    Article  PubMed  Google Scholar 

  136. Graves N, Holmes G, Leppik I. Compliant populations: variability in serum concentrations. Epilepsy Res Suppl. 1988;1:91–9.

    CAS  PubMed  Google Scholar 

  137. Tomson T, Dahl ML, Kimland E. Therapeutic monitoring of antiepileptic drugs for epilepsy. Cochrane Database Syst Rev. 2007;2007(1):CD002216.

    PubMed Central  Google Scholar 

  138. Malone SA, Eadie MJ, Addison RS, Wright AW, Dickinson RG. Monitoring salivary lamotrigine concentrations. J Clin Neurosci. 2006;13(9):902–7.

    Article  CAS  PubMed  Google Scholar 

  139. Grim SA, Ryan M, Miles MV, et al. Correlation of levetiracetam concentrations between serum and saliva. Ther Drug Monit. 2003;25(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  140. Al Za M, Deleu D, Batchelor C. Salivary free concentrations of anti-epileptic drugs: an evaluation in a routine clinical setting. Acta Neurol Belg. 2003;103:19–23.

    Google Scholar 

  141. Dwivedi R, Singh M, Kaleekal T, Gupta YK, Tripathi M. Concentration of antiepileptic drugs in persons with epilepsy: a comparative study in serum and saliva. Int J Neurosci. 2016;126(11):972–8.

    Article  CAS  PubMed  Google Scholar 

  142. Kintz P, Marescaux C, Mangin P. Testing human hair for carbamazepine in epileptic patients: is hair investigation suitable for drug monitoring? Hum Exp Toxicol. 1995;14(10):812–5.

    Article  CAS  PubMed  Google Scholar 

  143. Williams J, Myson V, Steward S, et al. Self-discontinuation of antiepileptic medication in pregnancy: detection by hair analysis. Epilepsia. 2002;43(8):824–31.

    Article  CAS  PubMed  Google Scholar 

  144. Williams J, Patsalos PN, Mei Z, Schapel G, Wilson JF, Richens A. Relation between dosage of carbamazepine and concentration in hair and plasma samples from a compliant inpatient epileptic population. Ther Drug Monitor. 2001;23(1):15–20.

    Article  CAS  Google Scholar 

  145. Kuczynska J, Karas-Ruszczyk K, Zakrzewska A, et al. Comparison of plasma, saliva, and hair lamotrigine concentrations. Clin Biochem. 2019;74:24–30.

    Article  CAS  PubMed  Google Scholar 

  146. Cramer JA, Westbrook LE, Devinsky O, Perrine K, Glassman MB, Camfield C. Development of the quality of life in epilepsy inventory for adolescents: the QOLIE-AD-48. Epilepsia. 1999;40(8):1114–21.

    Article  CAS  PubMed  Google Scholar 

  147. Pakpour AH, Gholami M, Esmaeili R, et al. A randomized controlled multimodal behavioral intervention trial for improving antiepileptic drug adherence. Epilepsy Behav. 2015;52:133–42.

    Article  PubMed  Google Scholar 

  148. Morisky DE, Green LW, Levine DM. Concurrent and predictive validity of a self-reported measure of medication adherence. Med Care. 1986;24(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  149. McAuley JW, McFadden LS, Elliott JO, Shneker BF. An evaluation of self-management behaviors and medication adherence in patients with epilepsy. Epilepsy Behav. 2008;13(4):637–41.

    Article  PubMed  Google Scholar 

  150. DiIorio C, Hennessy M, Manteuffel B. Epilepsy self-management: a test of a theoretical model. Nurs Res. 1996;45(4):211–7.

    Article  CAS  PubMed  Google Scholar 

  151. Dilorio C, Faherty B, Manteuffel B, Hoeffer B, Hilbert GA. Self-efficacy and social support in self-management of epilepsy. West J Nurs Res. 1992;14(3):292–307.

    Article  CAS  PubMed  Google Scholar 

  152. Dilorio C, Faherty B. Epilepsy self-management: partial replication and extension. Res Nurs Health. 1994;17(3):167–74.

    Article  Google Scholar 

  153. DiIorio C, Shafer PO, Letz R, et al. Behavioral, social, and affective factors associated with self-efficacy for self-management among people with epilepsy. Epilepsy Behav. 2006;9(1):158–63.

    Article  PubMed  Google Scholar 

  154. Lisk D, Greene S. Drug compliance and seizure control in epileptic children. Postgrad Med J. 1985;61(715):401–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mitchell WG, Scheier LM, Baker SA. Adherence to treatment in children with epilepsy: who follows" doctor’s orders"? Epilepsia. 2000;41(12):1616–25.

    Article  CAS  PubMed  Google Scholar 

  156. Cramer JA, Mattson RH, Prevey ML, Scheyer RD, Ouellette VL. How often is medication taken as prescribed? A novel assessment technique. JAMA. 1989;261(22):3273–7.

    Article  CAS  PubMed  Google Scholar 

  157. Steiner JF, Koepsell TD, Fihn SD, Inui TS. A general method of compliance assessment using centralized pharmacy records: description and validation. Med Care. 1988;26:814–23.

    Article  CAS  PubMed  Google Scholar 

  158. Osterberg L, Blaschke T. Adherence to medication. N Engl J Med. 2005;353(5):487–97.

    Article  CAS  PubMed  Google Scholar 

  159. Singh P, Gupta K, Singh G, Kaushal S. Simultaneous use of two different tools to assess compliance with antiepileptic drugs: experience in a community-based study. J Neurosci Rural Pract. 2020;11(04):636–9.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Al-aqeel S, Al-sabhan J. Strategies for improving adherence to antiepileptic drug treatment in patients with epilepsy. Cochrane Database Syst Rev. 2011;1:CD008312.

    Google Scholar 

  161. Dash D, Sebastian TM, Aggarwal M, Tripathi M. Impact of health education on drug adherence and self-care in people with epilepsy with low education. Epilepsy Behav. 2015;44:213–7.

    Article  PubMed  Google Scholar 

  162. AlAjmi R, Al-Aqeel S, Baz S. The impact of a pharmacist-led educational interview on medication adherence of Saudi patients with epilepsy. Patient Prefer Adher. 2017;11:959.

    Article  Google Scholar 

  163. Tang F, Zhu G, Jiao Z, Ma C, Chen N, Wang B. The effects of medication education and behavioral intervention on Chinese patients with epilepsy. Epilepsy Behav. 2014;37:157–64.

    Article  PubMed  Google Scholar 

  164. Sancho J, Peña P, Rufo M, Palacios G, Masramon X, Rejas J. Health and non-health care resources use in the management of adult outpatients with drug-resistant epilepsy in Spain: a cost-of-illness study (LINCE study). Epilepsy Res. 2008;81(2–3):176–87.

    Article  PubMed  Google Scholar 

  165. Owczarek K, Jedrzejczak J. Economic aspects of drug-resistant epilepsy. Neurol Neurochir Pol. 2001;35(2):309–18.

    CAS  PubMed  Google Scholar 

  166. Sunny AA, Iyer RS, Kumaran SG, Bunshaw NG, Shanmugham K, Govindaraj U. Affordability, availability and tolerability of antiseizure medications are better predictors of adherence than beliefs: changing paradigms from a low resource setting. Seizure. 2020;83:208–15.

    Article  PubMed  Google Scholar 

  167. von Gaudecker JR, Buelow JM, Miller WR, Tanner AL, Austin JK. Social determinants of health associated with epilepsy treatment adherence in the United States: a sco** review. Epilepsy Behav. 2021;124: 108328.

    Article  Google Scholar 

  168. Teh KX, Henien NPB, Wong LS, et al. A cross-sectional study on the rate of non-adherence to antiseizure medications and factors associated with non-adherence among patients with epilepsy. PLoS ONE. 2020;15(7): e0235674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Groenewegen A, Tofighy A, Ryvlin P, Steinhoff BJ, Dedeken P. Measures for improving treatment outcomes for patients with epilepsy: results from a large multinational patient-physician survey. Epilepsy Behav. 2014;34:58–67.

    Article  PubMed  Google Scholar 

  170. Sander J. Ultimate success in epilepsy: the patient’s perspective. Eur J Neurol. 2005;12(Suppl. 4):3–11.

    Article  PubMed  Google Scholar 

  171. Rugg-Gunn FJ, Sander JW. Management of chronic epilepsy. BMJ. 2012;345: e4576.

    Article  PubMed  CAS  Google Scholar 

  172. Shlobin NA, Clark JR, Hoffman SC, Hopkins BS, Kesavabhotla K, Dahdaleh NS. Patient education in neurosurgery: Part 1 of a systematic review. World Neurosurg. 2021;147(190–201): e1.

    Google Scholar 

  173. Shlobin NA, Clark JR, Hoffman SC, Hopkins BS, Kesavabhotla K, Dahdaleh NS. Patient education in neurosurgery: Part 2 of a systematic review. World Neurosurg. 2021;147:190-201.e1.

    Article  PubMed  Google Scholar 

  174. Sander JW. The use of antiepileptic drugs: principles and practice. Epilepsia. 2004;45:28–34.

    Article  PubMed  Google Scholar 

  175. Brodie MJ, Kwan P. The star systems. CNS Drugs. 2001;15(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  176. Haneef Z, Stern J, Dewar S, Engel J. Referral pattern for epilepsy surgery after evidence-based recommendations: a retrospective study. Neurology. 2010;75(8):699–704.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Cross JH, Jayakar P, Nordli D, et al. Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the Subcommission for Pediatric Epilepsy Surgery. Epilepsia. 2006;47(6):952–9.

    Article  PubMed  Google Scholar 

  178. Shlobin NA, Campbell JM, Rosenow JM, Rolston JD. Ethical considerations in the surgical and neuromodulatory treatment of epilepsy. Epilepsy Behav. 2022;127: 108524.

    Article  PubMed  Google Scholar 

  179. Shlobin NA, Rosenow JM. Ethical considerations in the implantation of neuromodulatory devices. Neuromodulation. 2021. https://doi.org/10.1111/ner.13357.

    Article  PubMed  Google Scholar 

  180. Shlobin NA, Sheldon M, Lam S. Informed consent in neurosurgery: a systematic review. Neurosurg Focus. 2020;49(5):E6.

    Article  PubMed  Google Scholar 

  181. Epilepsy Foundation. FDA news: cenobamate (XCOPRI®) for focal epilepsy in adults. Available from: https://www.epilepsy.com/article/2019/12/fda-news-cenobamate-xcopri%C2%AE-focal-epilepsy-adults. Accessed 7 Jan 2022.

  182. Krauss GL, Klein P, Brandt C, et al. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: a multicentre, double-blind, randomised, placebo-controlled, dose-response trial. Lancet Neurol. 2020;19(1):38–48.

    Article  CAS  PubMed  Google Scholar 

  183. Chung SS, French JA, Kowalski J, et al. Randomized phase 2 study of adjunctive cenobamate in patients with uncontrolled focal seizures. Neurology. 2020;94(22):e2311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sperling MR, Klein P, Aboumatar S, et al. Cenobamate (YKP3089) as adjunctive treatment for uncontrolled focal seizures in a large, phase 3, multicenter, open-label safety study. Epilepsia. 2020;61(6):1099–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lattanzi S, Trinka E, Zaccara G, et al. Adjunctive cenobamate for focal-onset seizures in adults: a systematic review and meta-analysis. CNS Drugs. 2020;34(11):1105–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sander JW, Rosenfeld WE, Halford JJ, Steinhoff BJ, Biton V, Toledo M. Long-term individual retention with cenobamate in adults with focal seizures: pooled data from the clinical development program. Epilepsia. 2022;63(1):139–49.

    Article  CAS  PubMed  Google Scholar 

  187. Sharma R, Nakamura M, Neupane C, et al. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur J Pharmacol. 2020;879: 173117.

    Article  CAS  PubMed  Google Scholar 

  188. Guignet M, Campbell A, White HS. Cenobamate (XCOPRI): can preclinical and clinical evidence provide insight into its mechanism of action? Epilepsia. 2020;61(11):2329–39.

    Article  CAS  PubMed  Google Scholar 

  189. Gogou M, Cross JH. Fenfluramine as antiseizure medication for epilepsy. Dev Med Child Neurol. 2021;63(8):899–907.

    Article  PubMed  Google Scholar 

  190. Lagae L, Sullivan J, Knupp K, et al. Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: a randomised, double-blind, placebo-controlled trial. Lancet. 2019;394(10216):2243–54.

    Article  CAS  PubMed  Google Scholar 

  191. Nabbout R, Mistry A, Zuberi S, et al. Fenfluramine for treatment-resistant seizures in patients with Dravet syndrome receiving stiripentol-inclusive regimens: a randomized clinical trial. JAMA Neurol. 2020;77(3):300–8.

    Article  PubMed  Google Scholar 

  192. Lagae L, Schoonjans AS, Gammaitoni AR, Galer BS, Ceulemans B. A pilot, open-label study of the effectiveness and tolerability of low-dose ZX 008 (fenfluramine HC l) in Lennox–Gastaut syndrome. Epilepsia. 2018;59(10):1881–8.

    Article  CAS  PubMed  Google Scholar 

  193. Billakota S, Devinsky O, Marsh E. Cannabinoid therapy in epilepsy. Curr Opin Neurol. 2019;32(2):220–6.

    Article  CAS  PubMed  Google Scholar 

  194. Devinsky O, Marsh E, Friedman D, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 2016;15(3):270–8.

    Article  CAS  PubMed  Google Scholar 

  195. Devinsky O, Cross JH, Laux L, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376(21):2011–20.

    Article  CAS  PubMed  Google Scholar 

  196. Devinsky O, Patel AD, Thiele EA, et al. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology. 2018;90(14):e1204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Thiele EA, Marsh ED, French JA, et al. Cannabidiol in patients with seizures associated with Lennox–Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2018;391(10125):1085–96.

    Article  CAS  PubMed  Google Scholar 

  198. Devinsky O, Patel AD, Cross JH, et al. Effect of cannabidiol on drop seizures in the Lennox–Gastaut syndrome. N Engl J Med. 2018;378(20):1888–97.

    Article  CAS  PubMed  Google Scholar 

  199. Privitera M, Bhathal H, Wong M, et al. Time to onset of cannabidiol (CBD) treatment effect in Lennox–Gastaut syndrome: analysis from two randomized controlled trials. Epilepsia. 2021;62(5):1130–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Madan Cohen J, Checketts D, Dunayevich E, et al. Time to onset of cannabidiol treatment effects in Dravet syndrome: analysis from two randomized controlled trials. Epilepsia. 2021;62(9):2218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Bialer M, Perucca E. Does cannabidiol have antiseizure activity independent of its interactions with clobazam? An appraisal of the evidence from randomized controlled trials. Epilepsia. 2020;61(6):1082–9.

    Article  CAS  PubMed  Google Scholar 

  202. Wiegand G, May TW, Ostertag P, Boor R, Stephani U, Franz DN. Everolimus in tuberous sclerosis patients with intractable epilepsy: a treatment option? Eur J Paediatr Neurol. 2013;17(6):631–8.

    Article  PubMed  Google Scholar 

  203. Krueger DA, Wilfong AA, Holland-Bouley K, et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol. 2013;74(5):679–87.

    Article  CAS  PubMed  Google Scholar 

  204. Krueger DA, Wilfong AA, Mays M, et al. Long-term treatment of epilepsy with everolimus in tuberous sclerosis. Neurology. 2016;87(23):2408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. French JA, Lawson JA, Yapici Z, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet. 2016;388(10056):2153–63.

    Article  CAS  PubMed  Google Scholar 

  206. Overwater IE, Rietman AB, van Eeghen AM, de Wit MCY. Everolimus for the treatment of refractory seizures associated with tuberous sclerosis complex (TSC): current perspectives. Ther Clin Risk Manag. 2019;15:951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josemir W. Sander.

Ethics declarations

Funding

Nathan A. Shlobin received no funding. Josemir W. Sander is based at the NIHR University College London Hospitals Biomedical Research Centre, which receives a proportion of funding from the UK Department of Health’s Research Centres funding scheme. He receives research support from the Dr Marvin Weil Epilepsy Research Fund, from the UK Epilepsy Society, and the Christelijke Vereniging voor de Verpleging van Lijders aan Epilepsie, the Netherlands.

Conflict of interest

Nathan A. Shlobin has no disclosures to report. Josemir W. Sander reports personal fees from Eisai, UCB, GW, Arvelle, and Zogenix, and grants from UCB outside the submitted work.

Ethics approval

Not required or sought. This was a narrative review of existing literature.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All relevant data can be found in the references of this review.

Code availability

Not applicable.

Author contributions

NAS conducted the literature search and data analysis and drafted the manuscript. JWS formulated the concept for the article and provided critical intellectual input. Both authors have read and approved the final submitted manuscript and agree to be accountable for the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlobin, N.A., Sander, J.W. Current Principles in the Management of Drug-Resistant Epilepsy. CNS Drugs 36, 555–568 (2022). https://doi.org/10.1007/s40263-022-00922-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-022-00922-4

Navigation