Log in

Current Findings and Potential Mechanisms of KarXT (Xanomeline–Trospium) in Schizophrenia Treatment

  • Review Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Standard schizophrenia treatment involves antipsychotic medications that target D2 dopamine receptors. However, these drugs have limitations in addressing all symptoms and can lead to adverse effects such as motor impairments, metabolic effects, sedation, sexual dysfunction, cognitive impairment, and tardive dyskinesia. Recently, KarXT has emerged as a novel drug for schizophrenia. KarXT combines xanomeline, a muscarinic receptor M1 and M4 agonist, with trospium, a nonselective antimuscarinic agent. Of note, xanomeline can readily cross blood–brain barrier (BBB) and, thus, enter into the brain, thereby stimulating muscarinic receptors (M1 and M4). By doing so, xanomeline has been shown to target negative symptoms and potentially improve positive symptoms. Trospium, on the other hand, is not able to cross BBB, thereby not affecting M1 and M4 receptors; instead, it acts as an antimuscarinic agent and, hence, diminishes peripheral activity of muscarinic receptors to minimize side effects probably stemming from xanomeline in other organs. Accordingly, ongoing clinical trials investigating KarXT’s efficacy in schizophrenia have demonstrated positive outcomes, including significant improvements in the Positive and Negative Syndrome Scale (PANSS) total score and cognitive function compared with placebo. These findings emphasize the potential of KarXT as a promising treatment for schizophrenia, providing symptom relief while minimizing side effects associated with xanomeline monotherapy. Despite such promising evidence, further research is needed to confirm the efficacy, safety, and tolerability of KarXT in managing schizophrenia. This review article explores the current findings and potential mechanisms of KarXT in the treatment of schizophrenia.

Graphical Abstract

KarXT, a promising medication for schizophrenia, combines xanomeline, an agonist for muscarinic receptors M1 and M4, with trospium, an antimuscarinic agent. Xanomeline can effectively penetrate the blood–brain barrier (BBB), allowing it to target and stimulate muscarinic receptors in the brain, leading to decline or eliminate of positive and negative symptoms as well as cognitive improvement. On the other hand, trospium lacks the ability to cross the BBB and primarily acts as an antimuscarinic agent in peripheral organs, reducing the potential side effects associated with xanomeline. These findings underscore the potential of KarXT as a viable treatment option for schizophrenia, offering symptom relief while minimizing the adverse effects typically associated with xanomeline as a monotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McCutcheon RA, Marques TR, Howes OD. Schizophrenia—an overview. JAMA Psychiat. 2020;77(2):201–10.

    Article  Google Scholar 

  2. Searles HF. Schizophrenia and the inevitability of death. Psychiatr Q. 1961;35(4):631–65.

    Article  CAS  PubMed  Google Scholar 

  3. Javitt DC. Balancing therapeutic safety and efficacy to improve clinical and economic outcomes in schizophrenia: a clinical overview. Am J Manag Care. 2014;20(8 Suppl):S160–5.

    PubMed  Google Scholar 

  4. James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858.

    Article  Google Scholar 

  5. Sokan A. Daily use of the medication adherence mobile phone application, Medisafe, to improve adherence over a 10-week period among African American adults, ages 25-60 years, diagnosed with schizophrenia. University of Massachusetts Global; 2023. No: 30425489.

  6. Shanko A, Abute L, Tamirat T. Attitudes towards schizophrenia and associated factors among community members in Hossana town: a mixed method study. BMC Psychiatry. 2023;23(1):1–10.

    Article  Google Scholar 

  7. Li X, Zhou W, Yi Z. A glimpse of gender differences in schizophrenia. Gen Psychiatry. 2022;35(4): e100823. https://doi.org/10.1136/gpsych-2022-100823.

    Article  Google Scholar 

  8. Brown AS. The environment and susceptibility to schizophrenia. Prog Neurobiol. 2011;93(1):23–58. https://doi.org/10.1016/j.pneurobio.2010.09.003.

    Article  CAS  PubMed  Google Scholar 

  9. Wahbeh MH, Avramopoulos D. Gene-environment interactions in schizophrenia: a literature review. Genes (Basel). 2021. https://doi.org/10.3390/genes12121850.

    Article  PubMed  Google Scholar 

  10. van de Leemput J, Hess JL, Glatt SJ, Tsuang MT. Chapter Three—Genetics of schizophrenia: historical insights and prevailing evidence. In: Friedmann T, Dunlap JC, Goodwin SF, editors. Advances in genetics. London: Academic Press; 2016. p. 99–141.

    Google Scholar 

  11. Gejman PV, Sanders AR, Duan J. The role of genetics in the etiology of schizophrenia. Psychiatr Clin North Am. 2010;33(1):35–66. https://doi.org/10.1016/j.psc.2009.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388(10039):86–97. https://doi.org/10.1016/s0140-6736(15)01121-6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Parakh P, Basu D. Cannabis and psychosis: have we found the missing links? Asian J Psychiatry. 2013;6(4):281–7. https://doi.org/10.1016/j.ajp.2013.03.012.

    Article  Google Scholar 

  14. Antonsen S, Mok PL, Webb RT, et al. Exposure to air pollution during childhood and risk of develo** schizophrenia: a national cohort study. Lancet Planetary Health. 2020;4(2):e64–73.

    Article  PubMed  Google Scholar 

  15. Onaolapo OJ, Onaolapo AY. Nutrition, nutritional deficiencies, and schizophrenia: an association worthy of constant reassessment. World J Clin Cases. 2021;9(28):8295–311. https://doi.org/10.12998/wjcc.v9.i28.8295.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang Q, Zhu X, Jiang X, et al. Relationship between stressful life events, co** styles, and schizophrenia relapse. Int J Ment Health Nurs. 2021;30(5):1149–59. https://doi.org/10.1111/inm.12865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu Q, Cai M, Ji Y, et al. Identifying the mediating role of socioeconomic status on the relationship between schizophrenia and major depressive disorder: a Mendelian randomisation analysis. Schizophrenia. 2023;9(1):53. https://doi.org/10.1038/s41537-023-00389-2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Samuel T, Nigussie K, Mirkena Y, Azale T. Relationship between social support and schizophrenia relapse among patients with schizophrenia on follow-up at Amanuel Mental Specialized Hospital, Addis Ababa, Ethiopia: a case-control study. Original Research. Front Psychiatry. 2022. https://doi.org/10.3389/fpsyt.2022.980614.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Van Lieshout RJ, Voruganti LP. Diabetes mellitus during pregnancy and increased risk of schizophrenia in offspring: a review of the evidence and putative mechanisms. J Psychiatry Neurosci. 2008;33(5):395–404.

    PubMed  PubMed Central  Google Scholar 

  20. Sørensen HJ, Mortensen EL, Reinisch JM, Mednick SA. Do hypertension and diuretic treatment in pregnancy increase the risk of schizophrenia in offspring? Am J Psychiatry. 2003;160(3):464–8. https://doi.org/10.1176/appi.ajp.160.3.464.

    Article  PubMed  Google Scholar 

  21. Rifkin L, Lewis S, Jones P, Toone B, Murray R. Low birth weight and schizophrenia. Br J Psychiatry. 1994;165(3):357–62. https://doi.org/10.1192/bjp.165.3.357.

    Article  CAS  PubMed  Google Scholar 

  22. Stępnicki P, Kondej M, Kaczor AA. Current concepts and treatments of schizophrenia. Molecules. 2018. https://doi.org/10.3390/molecules23082087.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Correll CU, Schooler NR. Negative symptoms in schizophrenia: a review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr Dis Treat. 2020;16:519–34.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Foti D, Novak KD, Hill KE, Ait OB. 13 - Neurophysiological assessment of anhedonia in depression and schizophrenia. In: Sangha S, Foti D, editors. Neurobiology of abnormal emotion and motivated behaviors. London: Academic Press; 2018. p. 242–56.

    Chapter  Google Scholar 

  25. Mueser K, Bellack A, Brady E. Hallucinations in schizophrenia. Acta Psychiatr Scand. 1990;82(1):26–9.

    Article  CAS  PubMed  Google Scholar 

  26. Bentham AMP, McKay A, Quemada I, Clare L, Eastwood N, McKenna P. Delusions in schizophrenia: a phenomenological and psychological exploration. Cogn Neuropsychiatry. 1996;1(4):289–304.

    Article  CAS  PubMed  Google Scholar 

  27. Correll CU, Schooler NR. Negative symptoms in schizophrenia: a review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr Dis Treat. 2020;16:519–34. https://doi.org/10.2147/ndt.S225643.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marder SR, Galderisi S. The current conceptualization of negative symptoms in schizophrenia. World Psychiatry. 2017;16(1):14–24.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Butcher I, Berry K, Haddock G. Understanding individuals’ subjective experiences of negative symptoms of schizophrenia: a qualitative study. Br J Clin Psychol. 2020;59(3):319–34.

    Article  PubMed  Google Scholar 

  30. Galderisi S, Mucci A, Buchanan RW, Arango C. Negative symptoms of schizophrenia: new developments and unanswered research questions. Lancet Psychiatry. 2018;5(8):664–77.

    Article  PubMed  Google Scholar 

  31. Sharma T, Antonova L. Cognitive function in schizophrenia: deficits, functional consequences, and future treatment. Psychiatr Clin. 2003;26(1):25–40.

    Google Scholar 

  32. Elvevag B, Goldberg TE. Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol. 2000;14(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  33. Savla GN, Moore DJ, Palmer BW. Cognitive functioning in schizophrenia. In: Clinical handbook of schizophrenia. New York: The Guilford Press; 2008. p. 91–9.

    Google Scholar 

  34. Kitchen H, Rofail D, Heron L, Sacco P. Cognitive impairment associated with schizophrenia: a review of the humanistic burden. Adv Ther. 2012;29:148–62.

    Article  PubMed  Google Scholar 

  35. George M, Maheshwari S, Chandran S, Manohar JS, Sathyanarayana Rao TS. Understanding the schizophrenia prodrome. Indian J Psychiatry. 2017;59(4):505–9. https://doi.org/10.4103/psychiatry.IndianJPsychiatry_464_17.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Morrens M, Hulstijn W, Sabbe B. Psychomotor slowing in schizophrenia. Schizophr Bull. 2007;33(4):1038–53. https://doi.org/10.1093/schbul/sbl051.

    Article  PubMed  Google Scholar 

  37. Hirjak D, Kubera KM, Thomann PA, Wolf RC. Motor dysfunction as an intermediate phenotype across schizophrenia and other psychotic disorders: progress and perspectives. Schizophr Res. 2018;200:26–34. https://doi.org/10.1016/j.schres.2017.10.007.

    Article  PubMed  Google Scholar 

  38. Janno S, Holi M, Tuisku K, Wahlbeck K. Prevalence of neuroleptic-induced movement disorders in chronic schizophrenia inpatients. Am J Psychiatry. 2004;161(1):160–3. https://doi.org/10.1176/appi.ajp.161.1.160.

    Article  PubMed  Google Scholar 

  39. Divac N, Prostran M, Jakovcevski I, Cerovac N. Second-generation antipsychotics and extrapyramidal adverse effects. Biomed Res Int. 2014;2014: 656370. https://doi.org/10.1155/2014/656370.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Uzman Özbek S, Alptekin K. Thought disorder as a neglected dimension in schizophrenia. Alpha Psychiatry. 2022;23(1):5–11. https://doi.org/10.1530/alphapsychiatry.2021.21371.

    Article  PubMed  Google Scholar 

  41. Sharkey RJ, Bacon C, Peterson Z, et al. Differences in the neural correlates of schizophrenia with positive and negative formal thought disorder in patients with schizophrenia in the ENIGMA dataset. Mol Psychiatry. 2024. https://doi.org/10.1038/s41380-024-02563-z.

    Article  PubMed  Google Scholar 

  42. Nickl-Jockschat T, Sharkey R, Bacon C, et al. Neural correlates of positive and negative formal thought disorder in individuals with schizophrenia: an ENIGMA schizophrenia working group study. Res Sq. 2023. https://doi.org/10.21203/rs.3.rs-3179362/v1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nordgaard J, Gravesen-Jensen M, Buch-Pedersen M, Parnas J. Formal thought disorder and self-disorder: an empirical study. Front Psychiatry. 2021. https://doi.org/10.3389/fpsyt.2021.640921.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Farah FH. Schizophrenia: an overview. Asian J Pharm. 2018;12(02):77.

    CAS  Google Scholar 

  45. Giordano GM, Bucci P, Mucci A, Pezzella P, Galderisi S. Gender differences in clinical and psychosocial features among persons with schizophrenia: a mini review. Front Psychiatry. 2021. https://doi.org/10.3389/fpsyt.2021.789179.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Andreasen NC, Flaum M. Schizophrenia: the characteristic symptoms. Schizophr Bull. 1991;17(1):27–49.

    Article  CAS  PubMed  Google Scholar 

  47. Soares-Weiser K, Maayan N, Bergman H, et al. First rank symptoms for schizophrenia. Cochrane Database Syst Rev. 2015;1: CD010653.

    PubMed  Google Scholar 

  48. Lally J, MacCabe JH. Antipsychotic medication in schizophrenia: a review. Br Med Bull. 2015;114(1):169–79.

    Article  CAS  PubMed  Google Scholar 

  49. Sepehry AA, Potvin S, Élie R, Stip E. Selective serotonin reuptake inhibitor (SSRI) add-on therapy for the negative symptoms of schizophrenia: a meta-analysis. J Clin Psychiatry. 2007;68(4):604–10.

    Article  CAS  PubMed  Google Scholar 

  50. Mao YM, Zhang MD. Augmentation with antidepressants in schizophrenia treatment: benefit or risk. Neuropsychiatr Dis Treat. 2015;11:701–13. https://doi.org/10.2147/ndt.S62266.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Helfer B, Samara MT, Huhn M, et al. Efficacy and safety of antidepressants added to antipsychotics for schizophrenia: a systematic review and meta-analysis. Am J Psychiatry. 2016;173(9):876–86. https://doi.org/10.1176/appi.ajp.2016.15081035.

    Article  PubMed  Google Scholar 

  52. Bruijnzeel D, Suryadevara U, Tandon R. Antipsychotic treatment of schizophrenia: an update. Asian J Psychiatry. 2014;11:3–7.

    Article  Google Scholar 

  53. Tandon R. Antipsychotics in the treatment of schizophrenia: an overview. J Clin Psychiatry. 2011;72(suppl 1):1151.

    Article  Google Scholar 

  54. Ameer MA, Saadabadi A. Neuroleptic medications. In: StatPearls [Internet]. Florida: StatPearls Publishing; 2023.

    Google Scholar 

  55. Chokhawala K, Stevens L. Antipsychotic medications. In: StatPearls [Internet]. Florida: StatPearls Publishing; 2023.

    Google Scholar 

  56. Ward K, Citrome L. Tolerability and safety outcomes of first-line oral second-generation antipsychotics in patients with schizophrenia. Expert Opin Drug Saf. 2024;23(4):399–409. https://doi.org/10.1080/14740338.2024.2328812.

    Article  CAS  PubMed  Google Scholar 

  57. Frazer A, Blier P. A Neuroscience-Based Nomenclature (NbN) for psychotropic agents. Int J Neuropsychopharmacol. 2016;19(8):pyw066. https://doi.org/10.1093/ijnp/pyw066.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hutson E, Ellington E, Hardy L. Neuroscience-based nomenclature for psychotropic medication. J Psychosoc Nurs Ment Health Serv. 2023;61(7):9–13. https://doi.org/10.3928/02793695-20230607-02.

    Article  PubMed  Google Scholar 

  59. Zohar J, Stahl S, Moller HJ, et al. A review of the current nomenclature for psychotropic agents and an introduction to the Neuroscience-Based Nomenclature. Eur Neuropsychopharmacol. 2015;25(12):2318–25. https://doi.org/10.1016/j.euroneuro.2015.08.019.

    Article  CAS  PubMed  Google Scholar 

  60. Blier P, Oquendo MA, Kupfer DJ. Progress on the Neuroscience-Based Nomenclature (NbN) for psychotropic medications. Neuropsychopharmacology. 2017;42(10):1927–8. https://doi.org/10.1038/npp.2017.33.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wilson M, Tripp J. Clomipramine (2019).

  62. Sindrup SH, Otto M, Finnerup NB, Jensen TS. Antidepressants in the treatment of neuropathic pain. Basic Clin Pharmacol Toxicol. 2005;96(6):399–409. https://doi.org/10.1111/j.1742-7843.2005.pto_96696601.x.

    Article  CAS  PubMed  Google Scholar 

  63. Grunze H, Schlösser S, Amann B, Walden J. Anticonvulsant drugs in bipolar disorder. Dialogues Clin Neurosci. 1999;1(1):24–40. https://doi.org/10.31887/DCNS.1999.1.1/hgrunze.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zohar J, Kasper S. Neuroscience-based Nomenclature (NbN): a call for action. World J Biol Psychiatry. 2016;17(5):318–20. https://doi.org/10.1080/15622975.2016.1193626.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zohar J, Levy DM. Neuroscience-based nomenclature of psychotropics: progress report. Eur Neuropsychopharmacol. 2022;57(36):8.

    Google Scholar 

  66. Drummond N, McCleary L, Freiheit E, et al. Antidepressant and antipsychotic prescribing in primary care for people with dementia. Can Fam Physician. 2018;64(11):e488–97.

    PubMed  PubMed Central  Google Scholar 

  67. Jennings AA, Guerin N, Foley T. Development of a tool for monitoring the prescribing of antipsychotic medications to people with dementia in general practice: a modified eDelphi consensus study. Clin Interv Aging. 2018;13:2107–17. https://doi.org/10.2147/cia.S178216.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Faden J, Citrome L. Resistance is not futile: treatment-refractory schizophrenia—overview, evaluation and treatment. Expert Opin Pharmacother. 2019;20(1):11–24. https://doi.org/10.1080/14656566.2018.1543409.

    Article  CAS  PubMed  Google Scholar 

  69. Li P, Snyder GL, Vanover KE. Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr Top Med Chem. 2016;16(29):3385–403. https://doi.org/10.2174/1568026616666160608084834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mukherjee S, Skrede S, Milbank E, Andriantsitohaina R, López M, Fernø J. Understanding the effects of antipsychotics on appetite control. Front Nutr. 2021;8: 815456. https://doi.org/10.3389/fnut.2021.815456.

    Article  PubMed  Google Scholar 

  71. Abou-Setta AM, Mousavi SS, Spooner C, et al. AHRQ comparative effectiveness reviews. First-generation versus second-generation antipsychotics in adults: comparative effectiveness. Agency for Healthcare Research and Quality (US); 2012. Report No.: 12-EHC054-EF.

  72. Haddad PM, Correll CU. The acute efficacy of antipsychotics in schizophrenia: a review of recent meta-analyses. Ther Adv Psychopharmacol. 2018;8(11):303–18. https://doi.org/10.1177/2045125318781475.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Grinchii D, Dremencov E. Mechanism of action of atypical antipsychotic drugs in mood disorders. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21249532.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Waller DG, Sampson AP. 21 - Schizophrenia and bipolar disorder. In: Waller DG, Sampson AP, editors. Medical pharmacology and therapeutics. 5th ed. Amsterdam: Elsevier; 2018. p. 287–96.

    Chapter  Google Scholar 

  75. Olagunju AT, Clark SR, Baune BT. Long-acting atypical antipsychotics in schizophrenia: a systematic review and meta-analyses of effects on functional outcome. Aust N Z J Psychiatry. 2019;53(6):509–27.

    Article  PubMed  Google Scholar 

  76. Stroup TS, Gray N. Management of common adverse effects of antipsychotic medications. World Psychiatry. 2018;17(3):341–56. https://doi.org/10.1002/wps.20567.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Blair DT, Dauner A. Extrapyramidal symptoms are serious side-effects of antipsychotic and other drugs. Nurse Pract. 1992;17(11):56, 62–4, 67. https://doi.org/10.1097/00006205-199211000-00018.

  78. Berman BD. Neuroleptic malignant syndrome: a review for neurohospitalists. Neurohospitalist. 2011;1(1):41–7. https://doi.org/10.1177/1941875210386491.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chokhawala K, Stevens L. Antipsychotic medications. In: StatPearls. Florida: StatPearls Publishing; 2023.

    Google Scholar 

  80. Zareba W, Lin DA. Antipsychotic drugs and QT interval prolongation. Psychiatr Q Fall. 2003;74(3):291–306. https://doi.org/10.1023/a:1024122706337.

    Article  Google Scholar 

  81. Muench J, Hamer AM. Adverse effects of antipsychotic medications. Am Fam Physician. 2010;81(5):617–22.

    PubMed  Google Scholar 

  82. Nucifora FC Jr, Woznica E, Lee BJ, Cascella N, Sawa A. Treatment resistant schizophrenia: Clinical, biological, and therapeutic perspectives. Neurobiol Dis. 2019;131: 104257. https://doi.org/10.1016/j.nbd.2018.08.016.

    Article  PubMed  Google Scholar 

  83. Quarantelli M, Palladino O, Prinster A, et al. Patients with poor response to antipsychotics have a more severe pattern of frontal atrophy: a voxel-based morphometry study of treatment resistance in schizophrenia. BioMed Res Int. 2014;2014: 325052. https://doi.org/10.1155/2014/325052.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Samara MT, Nikolakopoulou A, Salanti G, Leucht S. How many patients with schizophrenia do not respond to antipsychotic drugs in the short term? an analysis based on individual patient data from randomized controlled trials. Schizophr Bull. 2019;45(3):639–46. https://doi.org/10.1093/schbul/sby095.

    Article  PubMed  Google Scholar 

  85. Chouinard G, Samaha AN, Chouinard VA, et al. Antipsychotic-induced dopamine supersensitivity psychosis: pharmacology, criteria, and therapy. Psychother Psychosom. 2017;86(4):189–219. https://doi.org/10.1159/000477313.

    Article  PubMed  Google Scholar 

  86. Siskind D, Orr S, Sinha S, et al. Rates of treatment-resistant schizophrenia from first-episode cohorts: systematic review and meta-analysis. Br J Psychiatry. 2022;220(3):115–20. https://doi.org/10.1192/bjp.2021.61.

    Article  PubMed  Google Scholar 

  87. Goldschlager R, Kisely S, McCartney L, Siskind D. Clozapine v. First- and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. Br J Psychiatry. 2016;209(5):385–92. https://doi.org/10.1192/bjp.bp.115.177261.

    Article  PubMed  Google Scholar 

  88. Cipriani A, Boso M, Barbui C. Clozapine combined with different antipsychotic drugs for treatment resistant schizophrenia. Cochrane Database Syst Rev. 2009;3: CD006324. https://doi.org/10.1002/14651858.CD006324.pub2.

    Article  Google Scholar 

  89. Samara MT, Dold M, Gianatsi M, et al. Efficacy, acceptability, and tolerability of antipsychotics in treatment-resistant schizophrenia: a network meta-analysis. JAMA Psychiat. 2016;73(3):199–210. https://doi.org/10.1001/jamapsychiatry.2015.2955.

    Article  Google Scholar 

  90. Hoare SRJ, Kudwa AE, Luo R, Grigoriadis DE. Efficacy of vesicular monoamine transporter 2 inhibition and synergy with antipsychotics in animal models of schizophrenia. J Pharmacol Exp Ther. 2022;381(2):79–95. https://doi.org/10.1124/jpet.121.000979.

    Article  CAS  PubMed  Google Scholar 

  91. Connolly A, Wallman P, Dzahini O, Howes O, Taylor D. Meta-analysis and systematic review of vesicular monoamine transporter (VMAT-2) inhibitors in schizophrenia and psychosis. Psychopharmacology. 2024;241(2):225–41. https://doi.org/10.1007/s00213-023-06488-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Koblan KS, Kent J, Hopkins SC, et al. A non-D2-receptor-binding drug for the treatment of schizophrenia. N Engl J Med. 2020;382(16):1497–506. https://doi.org/10.1056/NEJMoa1911772.

    Article  CAS  PubMed  Google Scholar 

  93. Dedic N, Dworak H, Zeni C, Rutigliano G, Howes OD. Therapeutic potential of TAAR1 agonists in schizophrenia: evidence from preclinical models and clinical studies. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222413185.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Halff EF, Rutigliano G, Garcia-Hidalgo A, Howes OD. Trace amine-associated receptor 1 (TAAR1) agonism as a new treatment strategy for schizophrenia and related disorders. Trends Neurosci. 2023;46(1):60–74. https://doi.org/10.1016/j.tins.2022.10.010.

    Article  CAS  PubMed  Google Scholar 

  95. Terry AV Jr. Role of the central cholinergic system in the therapeutics of schizophrenia. Curr Neuropharmacol. 2008;6(3):286–92. https://doi.org/10.2174/157015908785777247.

    Article  CAS  PubMed  Google Scholar 

  96. Sarter M, Lustig C, Taylor SF. Cholinergic contributions to the cognitive symptoms of schizophrenia and the viability of cholinergic treatments. Neuropharmacology. 2012;62(3):1544–53. https://doi.org/10.1016/j.neuropharm.2010.12.001.

    Article  CAS  PubMed  Google Scholar 

  97. Sarter M, Nelson CL, Bruno JP. Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophr Bull. 2005;31(1):117–38. https://doi.org/10.1093/schbul/sbi006.

    Article  PubMed  Google Scholar 

  98. Singh J, Kour K, Jayaram MB. Acetylcholinesterase inhibitors for schizophrenia. Cochrane Database Syst Rev. 2012;1(1): CD007967. https://doi.org/10.1002/14651858.CD007967.pub2.

    Article  PubMed  Google Scholar 

  99. Sam C, Bordoni B. Physiology, acetylcholine. In: StatPearls. Florida: StatPearls Publishing; 2024.

    Google Scholar 

  100. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76(1):116–29. https://doi.org/10.1016/j.neuron.2012.08.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bairy LK, Kumar S. Neurotransmitters and neuromodulators involved in learning and memory. Int J Basic Clin Pharmacol. 2019;8(12):2777–83.

    Article  Google Scholar 

  102. Klinkenberg I, Sambeth A, Blokland A. Acetylcholine and attention. Behav Brain Res. 2011;221(2):430–42.

    Article  CAS  PubMed  Google Scholar 

  103. Seeman P. Clozapine, a fast-off-D2 antipsychotic. ACS Chem Neurosci. 2014;5(1):24–9. https://doi.org/10.1021/cn400189s.

    Article  CAS  PubMed  Google Scholar 

  104. Conley RR, Tamminga CA, Kelly DL, Richardson CM. Treatment-resistant schizophrenic patients respond to clozapine after olanzapine non-response. Biol Psychiatry. 1999;46(1):73–7. https://doi.org/10.1016/s0006-3223(99)00029-3.

    Article  CAS  PubMed  Google Scholar 

  105. Higley MJ, Picciotto MR. Neuromodulation by acetylcholine: examples from schizophrenia and depression. Curr Opin Neurobiol. 2014;29:88–95. https://doi.org/10.1016/j.conb.2014.06.004.

    Article  CAS  PubMed  Google Scholar 

  106. Foster DJ, Jones CK, Conn PJ. Emerging approaches for treatment of schizophrenia: modulation of cholinergic signaling. Discov Med. 2012;14(79):413–20.

    PubMed  PubMed Central  Google Scholar 

  107. Paul SM, Yohn SE, Popiolek M, Miller AC, Felder CC. Muscarinic acetylcholine receptor agonists as novel treatments for schizophrenia. Am J Psychiatry. 2022;179(9):611–27. https://doi.org/10.1176/appi.ajp.21101083.

    Article  PubMed  Google Scholar 

  108. Cohen LH, Thale T, Tissenbaum MJ. Acetylcholine treatment of schizophrenia. Arch Neurol Psychiatry. 1944;51(2):171–5.

    Article  Google Scholar 

  109. Armocida G, Licata M, Gorini I, Ciliberti R. CTerapija acetilholinom u liječenju shizofrenije–iskustvo marija fiambertija u bolnici varese (1937). Acta Medico-historica Adriatica AMHA. 2019;17(1):91–102.

    Article  PubMed  Google Scholar 

  110. Barak S, Weiner I. Scopolamine induces disruption of latent inhibition which is prevented by antipsychotic drugs and an acetylcholinesterase inhibitor. Neuropsychopharmacology. 2007;32(5):989–99.

    Article  CAS  PubMed  Google Scholar 

  111. Tom NR, Varghese GH, Alexander H, Kumar TRA, Sivakumar T. A case report on atropine induced psychosis (2015).

  112. Basha SA, Sathiswara B. Atropine induced psychosis: a report of two cases. Int Health Sci Res. 2017;12:325–7.

    Google Scholar 

  113. Pae C-U. Role of the cholinesterase inhibitors in the treatment of schizophrenia. Expert Opin Investig Drugs. 2013;22(3):293–8.

    Article  CAS  PubMed  Google Scholar 

  114. Ribeiz SR, Bassitt DP, Arrais JA, Avila R, Steffens DC, Bottino CM. Cholinesterase inhibitors as adjunctive therapy in patients with schizophrenia and schizoaffective disorder: a review and meta-analysis of the literature. CNS Drugs. 2010;24:303–17.

    Article  CAS  PubMed  Google Scholar 

  115. Bodick N, Offen W, Shannon H, et al. The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Dis Assoc Disord. 1997;11:S16–22.

    CAS  PubMed  Google Scholar 

  116. Shannon HE, Rasmussen K, Bymaster FP, et al. Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res. 2000;42(3):249–59. https://doi.org/10.1016/s0920-9964(99)00138-3.

    Article  CAS  PubMed  Google Scholar 

  117. Shekhar A, Potter WZ, Lightfoot J, et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry. 2008;165(8):1033–9. https://doi.org/10.1176/appi.ajp.2008.06091591.

    Article  PubMed  Google Scholar 

  118. Veroff AE, Bodick NC, Offen WW, Sramek JJ, Cutler NR. Efficacy of xanomeline in Alzheimer disease: cognitive improvement measured using the Computerized Neuropsychological Test Battery (CNTB). Alzheimer Dis Assoc Disord. 1998;12(4):304–12.

    Article  CAS  PubMed  Google Scholar 

  119. Bymaster FP, Whitesitt CA, Shannon HE, et al. Xanomeline: a selective muscarinic agonist for the treatment of Alzheimer’s disease. Drug Dev Res. 1997;40(2):158–70.

    Article  CAS  Google Scholar 

  120. Avery EE, Baker LD, Asthana S. Potential role of muscarinic agonists in Alzheimer’s disease. Drugs Aging. 1997;11:450–9.

    Article  CAS  PubMed  Google Scholar 

  121. Sramek JJ, Hurley DJ, Wardle TS, et al. The safety and tolerance of xanomeline tartrate in patients with Alzheimer’s disease. J Clin Pharmacol. 1995;35(8):800–6.

    Article  CAS  PubMed  Google Scholar 

  122. Raedler T, Bymaster F, Tandon R, Copolov D, Dean B. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry. 2007;12(3):232–46.

    Article  CAS  PubMed  Google Scholar 

  123. Foster DJ, Bryant ZK, Conn PJ. Targeting muscarinic receptors to treat schizophrenia. Behav Brain Res. 2021;405: 113201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Abrams P, Andersson KE, Buccafusco JJ, et al. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol. 2006;148(5):565–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shin JH, Adrover MF, Wess J, Alvarez VA. Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens. Proc Natl Acad Sci. 2015;112(26):8124–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. El-Mallakh RS, Kirch DG, Shelton R, et al. The nucleus basalis of Meynert, senile plaques, and intellectual impairment in schizophrenia. J Neuropsychiatry Clin Neurosci. 1991;3(4):383–6.

    Article  CAS  PubMed  Google Scholar 

  127. Santiago LJ, Abrol R. Understanding G protein selectivity of muscarinic acetylcholine receptors using computational methods. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20215290.

    Article  PubMed  PubMed Central  Google Scholar 

  128. van der Westhuizen ET, Choy KHC, Valant C, et al. Fine tuning muscarinic acetylcholine receptor signaling through allostery and bias. Front Pharmacol. 2020;11: 606656. https://doi.org/10.3389/fphar.2020.606656.

    Article  CAS  PubMed  Google Scholar 

  129. Randáková A, Jakubík J. Functionally selective and biased agonists of muscarinic receptors. Pharmacol Res. 2021;169: 105641. https://doi.org/10.1016/j.phrs.2021.105641.

    Article  CAS  PubMed  Google Scholar 

  130. Bradley SJ, Molloy C, Valuskova P, et al. Biased M1-muscarinic-receptor-mutant mice inform the design of next-generation drugs. Nat Chem Biol. 2020;16(3):240–9. https://doi.org/10.1038/s41589-019-0453-9.

    Article  CAS  PubMed  Google Scholar 

  131. Wisler JW, Rockman HA, Lefkowitz RJ. Biased G protein-coupled receptor signaling: changing the paradigm of drug discovery. Circulation. 2018;137(22):2315–7. https://doi.org/10.1161/circulationaha.117.028194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dean B, McLeod M, Keriakous D, McKenzie J, Scarr E. Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry. 2002;7(10):1083–91.

    Article  CAS  PubMed  Google Scholar 

  133. Tzavara E, Bymaster F, Felder C, et al. Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Mol Psychiatry. 2003;8(7):673–9.

    Article  CAS  PubMed  Google Scholar 

  134. Kitaichi K, Day JC, Quirion R. A novel muscarinic M4 receptor antagonist provides further evidence of an autoreceptor role for the muscarinic M2 receptor sub-type. Eur J Pharmacol. 1999;383(1):53–6.

    Article  CAS  PubMed  Google Scholar 

  135. Tzavara ET, Bymaster FP, Davis RJ, et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related central nervous system pathologies. FASEB J. 2004;18(12):1410–2.

    Article  CAS  PubMed  Google Scholar 

  136. Kaul I, Sawchak S, Correll CU, et al. Efficacy and safety of the muscarinic receptor agonist KarXT (xanomeline-trospium) in schizophrenia (EMERGENT-2) in the USA: results from a randomised, double-blind, placebo-controlled, flexible-dose phase 3 trial. Lancet. 2024;403(10422):160–70. https://doi.org/10.1016/s0140-6736(23)02190-6.

    Article  CAS  PubMed  Google Scholar 

  137. https://karunatx.com/pipeline-programs/karxt/.

  138. Tsopelas ND, Marin DB. 32—Cholinergic treatments of Alzheimer’s disease. In: Hof PR, Mobbs CV, editors. Functional neurobiology of aging. London: Academic Press; 2001. p. 475–86.

    Chapter  Google Scholar 

  139. Dencker D, Wörtwein G, Weikop P, et al. Involvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomeline. J Neurosci. 2011;31(16):5905–8. https://doi.org/10.1523/jneurosci.0370-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Brannan SK, Sawchak S, Miller AC, Lieberman JA, Paul SM, Breier A. Muscarinic cholinergic receptor agonist and peripheral antagonist for schizophrenia. N Engl J Med. 2021;384(8):717–26. https://doi.org/10.1056/NEJMoa2017015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Singh A. Xanomeline and trospium: a potential fixed drug combination (FDC) for schizophrenia—a brief review of current data. Innov Clin Neurosci. 2022;19(10–12):43–7.

    PubMed  PubMed Central  Google Scholar 

  142. Coppola M, Mondola R, Oliva F, Luigi PR. Chapter 79—Areca alkaloids and schizophrenia. In: Preedy VR, editor. Neuropathology of drug addictions and substance misuse. London: Academic Press; 2016. p. 794–802.

    Chapter  Google Scholar 

  143. Li Z, Jia K, Duan Y, Wang D, Zhou Z, Dong S. Xanomeline derivative EUK1001 attenuates Alzheimer’s disease pathology in a triple transgenic mouse model. Mol Med Rep. 2017;16(5):7835–40. https://doi.org/10.3892/mmr.2017.7502.

    Article  CAS  PubMed  Google Scholar 

  144. Bodick NC, Offen WW, Levey AI, et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol. 1997;54(4):465–73. https://doi.org/10.1001/archneur.1997.00550160091022.

    Article  CAS  PubMed  Google Scholar 

  145. Veroff AE, Bodick NC, Offen WW, Sramek JJ, Cutler NR. Efficacy of xanomeline in Alzheimer disease: cognitive improvement measured using the Computerized Neuropsychological Test Battery (CNTB). Alzheimer Dis Assoc Disord. 1998;12(4):304–12. https://doi.org/10.1097/00002093-199812000-00010.

    Article  CAS  PubMed  Google Scholar 

  146. Bymaster FP, Carter PA, Yamada M, et al. Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity. Eur J Neurosci. 2003;17(7):1403–10. https://doi.org/10.1046/j.1460-9568.2003.02588.x.

    Article  PubMed  Google Scholar 

  147. Andersen MB, Fink-Jensen A, Peacock L, et al. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in cebus apella monkeys. Neuropsychopharmacology. 2003;28(6):1168–75. https://doi.org/10.1038/sj.npp.1300151.

    Article  CAS  PubMed  Google Scholar 

  148. Mirza NR, Peters D, Sparks RG. Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev. 2003;9(2):159–86. https://doi.org/10.1111/j.1527-3458.2003.tb00247.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shannon HE, Bymaster FP, Calligaro DO, et al. Xanomeline: a novel muscarinic receptor agonist with functional selectivity for M1 receptors. J Pharmacol Exp Ther. 1994;269(1):271–81.

    CAS  PubMed  Google Scholar 

  150. Jakubík J, El-Fakahany EE, Dolezal V. Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors. Mol Pharmacol. 2006;70(2):656–66. https://doi.org/10.1124/mol.106.023762.

    Article  CAS  PubMed  Google Scholar 

  151. Thorn CA, Moon J, Bourbonais CA, et al. Striatal, hippocampal, and cortical networks are differentially responsive to the M4- and M1-muscarinic acetylcholine receptor mediated effects of xanomeline. ACS Chem Neurosci. 2019;10(3):1753–64. https://doi.org/10.1021/acschemneuro.8b00625.

    Article  CAS  PubMed  Google Scholar 

  152. Heinrich JN, Butera JA, Carrick T, et al. Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur J Pharmacol. 2009;605(1–3):53–6. https://doi.org/10.1016/j.ejphar.2008.12.044.

    Article  CAS  PubMed  Google Scholar 

  153. Zhang W, Yamada M, Gomeza J, Basile AS, Wess J. Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1–M5 muscarinic receptor knock-out mice. J Neurosci. 2002;22(15):6347–52. https://doi.org/10.1523/jneurosci.22-15-06347.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bubser M, Bridges TM, Dencker D, et al. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents. ACS Chem Neurosci. 2014;5(10):920–42. https://doi.org/10.1021/cn500128b.

    Article  CAS  PubMed  Google Scholar 

  155. Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov. 2007;6(9):721–33. https://doi.org/10.1038/nrd2379.

    Article  CAS  PubMed  Google Scholar 

  156. Tzavara ET, Bymaster FP, Davis RJ, et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J. 2004;18(12):1410–2. https://doi.org/10.1096/fj.04-1575fje.

    Article  CAS  PubMed  Google Scholar 

  157. Watson J, Brough S, Coldwell MC, et al. Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol. 1998;125(7):1413–20. https://doi.org/10.1038/sj.bjp.0702201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Weiden PJ, Breier A, Kavanagh S, Miller AC, Brannan SK, Paul SM. Antipsychotic efficacy of KarXT (xanomeline-trospium): post hoc analysis of positive and negative syndrome scale categorical response rates, time course of response, and symptom domains of response in a phase 2 study. J Clin Psychiatry. 2022. https://doi.org/10.4088/JCP.21m14316.

    Article  PubMed  Google Scholar 

  159. Brannan S, Miller A, Paul S, Breier A. KarXT, a combination of the M1/M4 cholinergic receptor agonist xanomeline and trospium for the treatment of psychosis and cognitive impairment in schizophrenia: phase I studies. London: Nature Publishing Group; 2018. p. S174–5.

    Google Scholar 

  160. Breier A, Brannan SK, Paul SM, Miller AC. Evidence of trospium’s ability to mitigate cholinergic adverse events related to xanomeline: phase 1 study results. Psychopharmacology. 2023;240:1191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. NCT02831231. https://clinicaltrials.gov/study/NCT02831231.

  162. van der Westhuizen ET, Choy KHC, Valant C, et al. Fine tuning muscarinic acetylcholine receptor signaling through allostery and bias. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2020.606656.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Brisch R, Saniotis A, Wolf R, et al. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry. 2014;5:47. https://doi.org/10.3389/fpsyt.2014.00047.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Grace AA, Bunney BS, Moore H, Todd CL. Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci. 1997;20(1):31–7. https://doi.org/10.1016/s0166-2236(96)10064-3.

    Article  CAS  PubMed  Google Scholar 

  165. Chiodo LA, Bunney BS. Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci. 1983;3(8):1607–19. https://doi.org/10.1523/jneurosci.03-08-01607.1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Valenti O, Cifelli P, Gill KM, Grace AA. Antipsychotic drugs rapidly induce dopamine neuron depolarization block in a developmental rat model of schizophrenia. J Neurosci. 2011;31(34):12330–8. https://doi.org/10.1523/jneurosci.2808-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mark GP, Shabani S, Dobbs LK, Hansen ST. Cholinergic modulation of mesolimbic dopamine function and reward. Physiol Behav. 2011;104(1):76–81. https://doi.org/10.1016/j.physbeh.2011.04.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience. 2014;282:13–22. https://doi.org/10.1016/j.neuroscience.2014.01.025.

    Article  CAS  PubMed  Google Scholar 

  169. Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci. 1991;11(10):3218–26. https://doi.org/10.1523/jneurosci.11-10-03218.1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gomeza J, Zhang L, Kostenis E, et al. Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M(4) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA. 1999;96(18):10483–8. https://doi.org/10.1073/pnas.96.18.10483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Koshimizu H, Leiter LM, Miyakawa T. M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition. Mol Brain. 2012. https://doi.org/10.1186/1756-6606-5-10.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Moehle MS, Pancani T, Byun N, et al. Cholinergic projections to the substantia nigra pars reticulata inhibit dopamine modulation of basal ganglia through the M(4) muscarinic receptor. Neuron. 2017;96(6):1358-1372.e4. https://doi.org/10.1016/j.neuron.2017.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mena-Segovia J, Winn P, Bolam JP. Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev. 2008;58(2):265–71. https://doi.org/10.1016/j.brainresrev.2008.02.003.

    Article  CAS  PubMed  Google Scholar 

  174. **ao C, Cho JR, Zhou C, et al. Cholinergic mesopontine signals govern locomotion and reward through dissociable midbrain pathways. Neuron. 2016;90(2):333–47. https://doi.org/10.1016/j.neuron.2016.03.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Scarr E, Um JY, Cowie TF, Dean B. Cholinergic muscarinic M4 receptor gene polymorphisms: a potential risk factor and pharmacogenomic marker for schizophrenia. Schizophr Res. 2013;146(1–3):279–84. https://doi.org/10.1016/j.schres.2013.01.023.

    Article  PubMed  Google Scholar 

  176. Scarr E, Sundram S, Keriakous D, Dean B. Altered hippocampal muscarinic M4, but not M1, receptor expression from subjects with schizophrenia. Biol Psychiatry. 2007;61(10):1161–70.

    Article  CAS  PubMed  Google Scholar 

  177. Yohn SE, Foster DJ, Covey DP, et al. Activation of the mGlu(1) metabotropic glutamate receptor has antipsychotic-like effects and is required for efficacy of M(4) muscarinic receptor allosteric modulators. Mol Psychiatry. 2020;25(11):2786–99. https://doi.org/10.1038/s41380-018-0206-2.

    Article  CAS  PubMed  Google Scholar 

  178. Cho HP, Garcia-Barrantes PM, Brogan JT, et al. Chemical modulation of mutant mGlu1 receptors derived from deleterious GRM1 mutations found in schizophrenics. ACS Chem Biol. 2014;9(10):2334–46. https://doi.org/10.1021/cb500560h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ayoub MA, Angelicheva D, Vile D, et al. Deleterious GRM1 mutations in schizophrenia. PLoS One. 2012;7(3): e32849. https://doi.org/10.1371/journal.pone.0032849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Pancani T, Bolarinwa C, Smith Y, Lindsley CW, Conn PJ, **ang Z. M4 mAChR-mediated modulation of glutamatergic transmission at corticostriatal synapses. ACS Chem Neurosci. 2014;5(4):318–24. https://doi.org/10.1021/cn500003z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lee G, Zhou Y. NMDAR Hypofunction animal models of schizophrenia. Front Mol Neurosci. 2019;12:185. https://doi.org/10.3389/fnmol.2019.00185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Coyle JT, Ruzicka WB, Balu DT. Fifty years of research on schizophrenia: the ascendance of the glutamatergic synapse. Am J Psychiatry. 2020;177(12):1119–28. https://doi.org/10.1176/appi.ajp.2020.20101481.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Grannan MD. Evaluating novel muscarinic acetylcholine receptor potentiators for the treatment of cognitive deficits in schizophrenia. Nashville: Vanderbilt University; 2016.

    Google Scholar 

  184. Dean B, McLeod M, Keriakous D, McKenzie J, Scarr E. Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry. 2002;7(10):1083–91. https://doi.org/10.1038/sj.mp.4001199.

    Article  CAS  PubMed  Google Scholar 

  185. Mancama D, Arranz M, Landau S, Kerwin R. Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2003;119(1):2–6.

    Article  Google Scholar 

  186. Dean B, Crook JM, Pavey G, Opeskin K, Copolov DL. Muscarinic1 and 2 receptor mRNA in the human caudate-putamen: no change in m1 mRNA in schizophrenia. Mol Psychiatry. 2000;5(2):203–7. https://doi.org/10.1038/sj.mp.4000684.

    Article  CAS  PubMed  Google Scholar 

  187. Haroutunian V, Davidson M, Kanof PD, et al. Cortical cholinergic markers in schizophrenia. Schizophr Res. 1994;12(2):137–44. https://doi.org/10.1016/0920-9964(94)90071-x.

    Article  CAS  PubMed  Google Scholar 

  188. Marino MJ, Conn PJ. Direct and indirect modulation of the N-methyl d-aspartate receptor. Curr Drug Targets CNS Neurol Disord. 2002;1(1):1–16. https://doi.org/10.2174/1568007023339544.

    Article  CAS  PubMed  Google Scholar 

  189. Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ. Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci USA. 1998;95(19):11465–70. https://doi.org/10.1073/pnas.95.19.11465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Anagnostaras SG, Murphy GG, Hamilton SE, et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci. 2003;6(1):51–8. https://doi.org/10.1038/nn992.

    Article  CAS  PubMed  Google Scholar 

  191. Davis AA, Fritz JJ, Wess J, Lah JJ, Levey AI. Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J Neurosci. 2010;30(12):4190–6. https://doi.org/10.1523/jneurosci.6393-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Medeiros R, Kitazawa M, Caccamo A, et al. Loss of muscarinic M1 receptor exacerbates alzheimer’s disease–like pathology and cognitive decline. Am J Pathol. 2011;179(2):980–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Fisher A. Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease. J Neurochem. 2012;120(Suppl 1):22–33. https://doi.org/10.1111/j.1471-4159.2011.07507.x.

    Article  CAS  PubMed  Google Scholar 

  194. Beach TG, Walker DG, Potter PE, Sue LI, Fisher A. Reduction of cerebrospinal fluid amyloid beta after systemic administration of M1 muscarinic agonists. Brain Res. 2001;905(1–2):220–3. https://doi.org/10.1016/s0006-8993(01)02484-2.

    Article  CAS  PubMed  Google Scholar 

  195. Caccamo A, Oddo S, Billings LM, et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron. 2006;49(5):671–82. https://doi.org/10.1016/j.neuron.2006.01.020.

    Article  CAS  PubMed  Google Scholar 

  196. Bartus RT. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol. 2000;163(2):495–529.

    Article  CAS  PubMed  Google Scholar 

  197. Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res. 2013;36(4):375–99. https://doi.org/10.1007/s12272-013-0036-3.

    Article  CAS  PubMed  Google Scholar 

  198. Azargoonjahromi A. Dual role of nitric oxide in Alzheimer’s disease. Nitric Oxide. 2023;134–135:23–37. https://doi.org/10.1016/j.niox.2023.03.003.

    Article  CAS  PubMed  Google Scholar 

  199. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimer’s Dementia Transl Res Clin Interv. 2019;5:272–93.

    Article  Google Scholar 

  200. Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer disease: an update. J Central Nerv Syst Dis. 2020;12: 1179573520907397.

    Google Scholar 

  201. Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord. 2013;6(1):19–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Fisher A. Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics. 2008;5(3):433–42. https://doi.org/10.1016/j.nurt.2008.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Jackson S, Ham RJ, Wilkinson D. The safety and tolerability of donepezil in patients with Alzheimer’s disease. Br J Clin Pharmacol. 2004;58:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ruangritchankul S, Chantharit P, Srisuma S, Gray LC. Adverse drug reactions of acetylcholinesterase inhibitors in older people living with dementia: a comprehensive literature review. Ther Clin Risk Manag. 2021;17:927–49. https://doi.org/10.2147/tcrm.S323387.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Yi F, Ball J, Stoll KE, et al. Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition. J Physiol. 2014;592(16):3463–94. https://doi.org/10.1113/jphysiol.2014.275453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Neuhofer D, Lassalle O, Manzoni OJ. Muscarinic M1 receptor modulation of synaptic plasticity in nucleus accumbens of wild-type and fragile X mice. ACS Chem Neurosci. 2018;9(9):2233–40. https://doi.org/10.1021/acschemneuro.7b00398.

    Article  CAS  PubMed  Google Scholar 

  207. Lv X, Dickerson JW, Rook JM, Lindsley CW, Conn PJ, **ang Z. M(1) muscarinic activation induces long-lasting increase in intrinsic excitability of striatal projection neurons. Neuropharmacology. 2017;118:209–22. https://doi.org/10.1016/j.neuropharm.2017.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Francis TC, Yano H, Demarest TG, Shen H, Bonci A. High-frequency activation of nucleus accumbens D1-MSNs drives excitatory potentiation on D2-MSNs. Neuron. 2019;103(3):432-444.e3. https://doi.org/10.1016/j.neuron.2019.05.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci USA. 2001;98(26):15312–7. https://doi.org/10.1073/pnas.261583798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jones CK, Brady AE, Davis AA, et al. Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci. 2008;28(41):10422–33. https://doi.org/10.1523/jneurosci.1850-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Davoren JE, O’Neil SV, Anderson DP, et al. Design and optimization of selective azaindole amide M1 positive allosteric modulators. Bioorg Med Chem Lett. 2016;26(2):650–5. https://doi.org/10.1016/j.bmcl.2015.11.053.

    Article  CAS  PubMed  Google Scholar 

  212. Ghoshal A, Rook JM, Dickerson JW, et al. Potentiation of M1 muscarinic receptor reverses plasticity deficits and negative and cognitive symptoms in a schizophrenia mouse model. Neuropsychopharmacology. 2016;41(2):598–610. https://doi.org/10.1038/npp.2015.189.

    Article  CAS  PubMed  Google Scholar 

  213. Scarpa M, Hesse S, Bradley SJ. M1 muscarinic acetylcholine receptors: a therapeutic strategy for symptomatic and disease-modifying effects in Alzheimer’s disease? Adv Pharmacol. 2020;88:277–310. https://doi.org/10.1016/bs.apha.2019.12.003.

    Article  CAS  PubMed  Google Scholar 

  214. Felder CC, Goldsmith PJ, Jackson K, et al. Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology. 2018;136(Pt C):449–58. https://doi.org/10.1016/j.neuropharm.2018.01.028.

    Article  CAS  PubMed  Google Scholar 

  215. Thorn CA, Popiolek M, Stark E, Edgerton JR. Effects of M1 and M4 activation on excitatory synaptic transmission in CA1. Hippocampus. 2017;27(7):794–810. https://doi.org/10.1002/hipo.22732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Dasari S, Gulledge AT. M1 and M4 receptors modulate hippocampal pyramidal neurons. J Neurophysiol. 2011;105(2):779–92. https://doi.org/10.1152/jn.00686.2010.

    Article  PubMed  Google Scholar 

  217. Gould RW, Russell JK, Nedelcovych MT, et al. Modulation of arousal and sleep/wake architecture by M(1) PAM VU0453595 across young and aged rodents and nonhuman primates. Neuropsychopharmacology. 2020;45(13):2219–28. https://doi.org/10.1038/s41386-020-00812-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Choy KH, Shackleford DM, Malone DT, et al. Positive allosteric modulation of the muscarinic M1 receptor improves efficacy of antipsychotics in mouse glutamatergic deficit models of behavior. J Pharmacol Exp Ther. 2016;359(2):354–65. https://doi.org/10.1124/jpet.116.235788.

    Article  CAS  PubMed  Google Scholar 

  219. Galvin VC, Yang ST, Paspalas CD, et al. Muscarinic M1 receptors modulate working memory performance and activity via KCNQ potassium channels in the primate prefrontal cortex. Neuron. 2020;106(4):649-661.e4. https://doi.org/10.1016/j.neuron.2020.02.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Shirey JK, Brady AE, Jones PJ, et al. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci. 2009;29(45):14271–86. https://doi.org/10.1523/jneurosci.3930-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Grishin AA, Benquet P, Gerber U. Muscarinic receptor stimulation reduces NMDA responses in CA3 hippocampal pyramidal cells via Ca2+-dependent activation of tyrosine phosphatase. Neuropharmacology. 2005;49(3):328–37. https://doi.org/10.1016/j.neuropharm.2005.03.019.

    Article  CAS  PubMed  Google Scholar 

  222. Gould RW, Dencker D, Grannan M, et al. Role for the M1 muscarinic acetylcholine receptor in top-down cognitive processing using a touchscreen visual discrimination task in mice. ACS Chem Neurosci. 2015;6(10):1683–95. https://doi.org/10.1021/acschemneuro.5b00123.

    Article  CAS  PubMed  Google Scholar 

  223. Buchanan KA, Petrovic MM, Chamberlain SE, Marrion NV, Mellor JR. Facilitation of long-term potentiation by muscarinic M(1) receptors is mediated by inhibition of SK channels. Neuron. 2010;68(5):948–63. https://doi.org/10.1016/j.neuron.2010.11.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Grannan MD, Mielnik CA, Moran SP, et al. Prefrontal cortex-mediated impairments in a genetic model of nmda receptor hypofunction are reversed by the novel M(1) PAM VU6004256. ACS Chem Neurosci. 2016;7(12):1706–16. https://doi.org/10.1021/acschemneuro.6b00230.

    Article  CAS  PubMed  Google Scholar 

  225. Jones AL, Mowry BJ, McLean DE, Mantzioris BX, Pender MP, Greer JM. Elevated levels of autoantibodies targeting the M1 muscarinic acetylcholine receptor and neurofilament medium in sera from subgroups of patients with schizophrenia. J Neuroimmunol. 2014;269(1–2):68–75. https://doi.org/10.1016/j.jneuroim.2014.02.008.

    Article  CAS  PubMed  Google Scholar 

  226. Tanaka S, Matsunaga H, Kimura M, et al. Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders. J Neuroimmunol. 2003;141(1–2):155–64. https://doi.org/10.1016/s0165-5728(03)00252-2.

    Article  CAS  PubMed  Google Scholar 

  227. Woolley ML, Carter HJ, Gartlon JE, Watson JM, Dawson LA. Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. Eur J Pharmacol. 2009;603(1–3):147–9. https://doi.org/10.1016/j.ejphar.2008.12.020.

    Article  CAS  PubMed  Google Scholar 

  228. Harvey RD. Muscarinic receptor agonists and antagonists: effects on cardiovascular function. Handb Exp Pharmacol. 2012;208:299–316. https://doi.org/10.1007/978-3-642-23274-9_13.

    Article  CAS  Google Scholar 

  229. Osipov AV, Averin AS, Shaykhutdinova ER, Dyachenko IA, Tsetlin VI, Utkin YN. Muscarinic and nicotinic acetylcholine receptors in the regulation of the cardiovascular system. Russ J Bioorg Chem. 2023;49(1):1–18. https://doi.org/10.1134/S1068162023010211.

    Article  CAS  Google Scholar 

  230. Jones SE, Harvey PD. Cross-diagnostic determinants of cognitive functioning: the muscarinic cholinergic receptor as a model system. Transl Psychiatry. 2023;13(1):100. https://doi.org/10.1038/s41398-023-02400-x.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Correll CU, Miller A, Sawchak S, Paul S, Brannan S. Safety and efficacy of KarXT (xanomeline-trospium) in patients with schizophrenia: results from a phase 3, randomized, double-blind, placebo-controlled trial (EMERGENT-2) (2022).

  232. Kaul I, Sawchak S, Correll CU, et al. Efficacy and safety of the muscarinic receptor agonist KarXT (xanomeline–trospium) in schizophrenia (EMERGENT-2) in the USA: results from a randomised, double-blind, placebo-controlled, flexible-dose phase 3 trial. Lancet. 2024;403(10422):160–70.

    Article  CAS  PubMed  Google Scholar 

  233. Correll CU, Angelov AS, Miller AC, Weiden PJ, Brannan SK. Safety and tolerability of KarXT (xanomeline–trospium) in a phase 2, randomized, double-blind, placebo-controlled study in patients with schizophrenia. Schizophrenia. 2022;8(1):109.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Brannan SK, Sawchak S, Miller AC, Lieberman JA, Paul SM, Breier A. Muscarinic cholinergic receptor agonist and peripheral antagonist for schizophrenia. N Engl J Med. 2021;384(8):717–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Sauder C, Allen LA, Baker E, Miller AC, Paul SM, Brannan SK. Effectiveness of KarXT (xanomeline-trospium) for cognitive impairment in schizophrenia: post hoc analyses from a randomised, double-blind, placebo-controlled phase 2 study. Transl Psychiatry. 2022;12(1):491.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Weiden PJ, Breier A, Kavanagh S, Miller AC, Brannan SK, Paul SM. Antipsychotic efficacy of KarXT (xanomeline–trospium): post hoc analysis of positive and negative syndrome scale categorical response rates, time course of response, and symptom domains of response in a phase 2 study. J Clin Psychiatry. 2022;83(3):40913.

    Article  Google Scholar 

  237. NCT04659161. https://clinicaltrials.gov/study/NCT04659161.

  238. NCT03697252. https://www.clinicaltrials.gov/study/NCT03697252?cond=NCT03697252&rank=1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Azargoonjahromi.

Ethics declarations

Funding

This review did not receive any specific grants from public, private, or not-for-profit funding organizations.

Competing Interests

There are no conflicts of interest to disclose.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Data Availability

All data and materials are within the paper.

Code Availability

Not applicable.

Author Contributions

A.A. has accomplished all parts of this review article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azargoonjahromi, A. Current Findings and Potential Mechanisms of KarXT (Xanomeline–Trospium) in Schizophrenia Treatment. Clin Drug Investig (2024). https://doi.org/10.1007/s40261-024-01377-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40261-024-01377-9

Navigation