Log in

Prediction Models for Intravenous Immunoglobulin Non-Responders of Kawasaki Disease Using Machine Learning

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objective

Intravenous immunoglobulin (IVIG) is a prominent therapeutic agent for Kawasaki disease (KD) that significantly reduces the incidence of coronary artery anomalies. Various methodologies, including machine learning, have been employed to develop IVIG non-responder prediction models; however, their validation and reproducibility remain unverified. This study aimed to develop a predictive scoring system for identifying IVIG nonresponders and rigorously test the accuracy and reliability of this system.

Methods

The study included an exposure group of 228 IVIG non-responders and a control group of 997 IVIG responders. Subsequently, a predictive machine learning model was constructed. The Shizuoka score, including variables such as the “initial treatment date” (cutoff: < 4 days), sodium level (cutoff: < 133 mEq/L), total bilirubin level (cutoff: ≥ 0.5 mg/dL), and neutrophil-to-lymphocyte ratio (cutoff: ≥ 2.6), was established. Patients meeting two or more of these criteria were grouped as high-risk IVIG non-responders. Using the Shizuoka score to stratify IVIG responders, propensity score matching was used to analyze 85 patients each for IVIG and IVIG-added prednisolone treatment in the high-risk group. In the IVIG plus prednisolone group, the IVIG non-responder count significantly decreased (p < 0.001), with an odds ratio of 0.192 (95% confidence interval 0.078–0.441).

Conclusions

Intravenous immunoglobulin non-responders were predicted using machine learning models and validated using propensity score matching. The initiation of initial IVIG-added prednisolone treatment in the high-risk group identified by the Shizuoka score, crafted using machine learning models, appears useful for predicting IVIG non-responders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dahdah N. A tale of a trail on how it takes 5 days of Kawasaki disease to initiate coronary artery injury and change the lives of children. Turk Arch Pediatr. 2024;59:131–4. https://doi.org/10.5152/TurkArchPediatr.2024.23254.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Furusho K, Kamiya T, Nakano H, Kiyosawa N, Shinomiya K, Hayashidera T, et al. High-dose intravenous gammaglobulin for Kawasaki disease. Lancet. 1984;2:1055–8. https://doi.org/10.1016/s0140-6736(84)91504-6.

    Article  CAS  PubMed  Google Scholar 

  3. Newburger JW, Takahashi M, Burns JC, Beiser AS, Chung KJ, Duffy CE, et al. The treatment of Kawasaki syndrome with intravenous gamma globulin. N Engl J Med. 1986;315:341–7. https://doi.org/10.1056/NEJM198608073150601.

    Article  CAS  PubMed  Google Scholar 

  4. Durongpisitkul K, Gururaj VJ, Park JM, Martin CF. The prevention of coronary artery aneurysm in Kawasaki disease: a meta-analysis on the efficacy of aspirin and immunoglobulin treatment. Pediatrics. 1995;96:1057–61.

    Article  CAS  PubMed  Google Scholar 

  5. Terai M, Shulman ST. Prevalence of coronary artery abnormalities in Kawasaki disease is highly dependent on gamma globulin dose but independent of salicylate dose. J Pediatr. 1997;131:888–93. https://doi.org/10.1016/s0022-3476(97)70038-6.

    Article  CAS  PubMed  Google Scholar 

  6. Burns JC, Capparelli EV, Brown JA, Newburger JW, Glode MP. Intravenous gamma-globulin treatment and retreatment in Kawasaki disease. US/Canadian Kawasaki Syndrome Study Group. Pediatr Infect Dis J. 1998;17:1144–8. https://doi.org/10.1097/00006454-199812000-00009.

    Article  CAS  PubMed  Google Scholar 

  7. Han RK, Silverman ED, Newman A, McCrindle BW. Management and outcome of persistent or recurrent fever after initial intravenous gamma globulin therapy in acute Kawasaki disease. Arch Pediatr Adolesc Med. 2000;154:694–9. https://doi.org/10.1001/archpedi.154.7.694.

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi T, Inoue Y, Takeuchi K, Okada Y, Tamura K, Tomomasa T, et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. Circulation. 2006;113:2606–12. https://doi.org/10.1161/CIRCULATIONAHA.105.592865.

    Article  PubMed  Google Scholar 

  9. Sano T, Kurotobi S, Matsuzaki K, Yamamoto T, Maki I, Miki K, et al. Prediction of non-responsiveness to standard high-dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment. Eur J Pediatr. 2007;166:131–7. https://doi.org/10.1007/s00431-006-0223-z.

    Article  CAS  PubMed  Google Scholar 

  10. Egami K, Muta H, Ishii M, Suda K, Sugahara Y, Iemura M, et al. Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease. J Pediatr. 2006;149:237–40. https://doi.org/10.1016/j.jpeds.2006.03.050.

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi T, Saji T, Otani T, Takeuchi K, Nakamura T, Arakawa H, et al. Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a randomised, open-label, blinded-endpoints trial. Lancet. 2012;379:1613–20. https://doi.org/10.1016/S0140-6736(11)61930-2.

    Article  CAS  PubMed  Google Scholar 

  12. Miyata K, Kaneko T, Morikawa Y, Sakakibara H, Matsushima T, Misawa M, et al. Efficacy and safety of intravenous immunoglobulin plus prednisolone therapy in patients with Kawasaki disease (Post RAISE): a multicentre, prospective cohort study. Lancet Child Adolesc Health. 2018;2:855–62. https://doi.org/10.1016/S2352-4642(18)30293-1.

    Article  PubMed  Google Scholar 

  13. Ogata S, Ogihara Y, Honda T, Kon S, Akiyama K, Ishii M. Corticosteroid pulse combination therapy for refractory Kawasaki disease: a randomized trial. Pediatrics. 2012;129:e17-23. https://doi.org/10.1542/peds.2011-0148.

    Article  PubMed  Google Scholar 

  14. Hamada H, Suzuki H, Onouchi Y, Ebata R, Terai M, Fuse S, et al. Efficacy of primary treatment with immunoglobulin plus ciclosporin for prevention of coronary artery abnormalities in patients with Kawasaki disease predicted to be at increased risk of non-response to intravenous immunoglobulin (KAICA): a randomised controlled, open-label, blinded-endpoints, phase 3 trial. Lancet. 2019;393:1128–37. https://doi.org/10.1016/S0140-6736(18)32003-8.

    Article  CAS  PubMed  Google Scholar 

  15. Mori M, Matsubara T. Overview of guidelines for the medical treatment of acute Kawasaki disease in Japan (2020 revised version) and positioning of plasma exchange therapy in the acute phase. Pediatr Infect Dis J. 2023;42:e328–32. https://doi.org/10.1097/INF.0000000000003974.

    Article  PubMed  Google Scholar 

  16. Bi Q, Goodman KE, Kaminsky J, Lessler J. What is machine learning? A primer for the epidemiologist. Am J Epidemiol. 2019;188: 222239. https://doi.org/10.1093/aje/kwz189.

    Article  Google Scholar 

  17. Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19:64. https://doi.org/10.1186/s12874-019-0681-4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Obermeyer Z, Emanuel EJ. Predicting the future: big data, machine learning, and clinical medicine. N Engl J Med. 2016;375:1216–9. https://doi.org/10.1056/NEJMp1606181.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Goecks J, Jalili V, Heiser LM, Gray JW. How machine learning will transform biomedicine. Cell. 2020;181:92–101. https://doi.org/10.1016/j.cell.2020.03.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang T, Liu G, Lin H. A machine learning approach to predict intravenous immunoglobulin resistance in Kawasaki disease patients: a study based on a Southeast China population. PLoS ONE. 2021;16: e0253675. https://doi.org/10.1371/journal.pone.0253675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuniyoshi Y, Tokutake H, Takahashi N, Kamura A, Yasuda S, Tashiro M. Comparison of machine learning models for prediction of initial intravenous immunoglobulin resistance in children with Kawasaki disease. Front Pediatr. 2020;8: 570834. https://doi.org/10.3389/fped.2020.570834.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu J, Zhang J, Huang H, Wang Y, Zhang Z, Ma Y, et al. A machine learning model to predict intravenous immunoglobulin-resistant Kawasaki disease patients: retrospective study based on the Chongqing population. Front Pediatr. 2021;9: 756095. https://doi.org/10.3389/fped.2021.756095.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Takeuchi M, Inuzuka R, Hayashi T, Shindo T, Hirata Y, Shimizu N, et al. Novel risk assessment tool for immunoglobulin resistance in Kawasaki disease: application using a random forest classifier. Pediatr Infect Dis J. 2017;36:821–6. https://doi.org/10.1097/INF.0000000000001621.

    Article  PubMed  Google Scholar 

  24. Lam JY, Song MS, Kim GB, Shimizu C, Bainto E, Tremoulet AH, et al. Intravenous immunoglobulin resistance in Kawasaki disease patients: prediction using clinical data. Pediatr Res. 2023;16:1–6. https://doi.org/10.1038/s41390-023-02519-z.

    Article  CAS  Google Scholar 

  25. Sakai H, Iwashima S, Sano S, Akiyama N, Nagata E, Harazaki M, et al. Targeted use of prednisolone with intravenous immunoglobulin for Kawasaki disease. Clin Drug Investig. 2021;41:77–88. https://doi.org/10.1007/s40261-020-00984-6.

    Article  CAS  PubMed  Google Scholar 

  26. Kimura M, Harazaki M, Fukuoka T, Asakura I, Sakai H, Kamimaki T, et al. Targeted use of prednisolone with the second IVIG dose for refractory Kawasaki disease. Pediatr Int. 2017;59:397–403. https://doi.org/10.1111/ped.13190.

    Article  CAS  PubMed  Google Scholar 

  27. Ayusawa M, Sonobe T, Uemura S, Ogawa S, Nakamura Y, Kiyosawa N, et al. Revision of diagnostic guidelines for Kawasaki disease (the 5th revised edition). Pediatr Int. 2005;47:232–4. https://doi.org/10.1111/j.1442-200x.2005.02033.x.

    Article  PubMed  Google Scholar 

  28. Research Committee on Kawasaki Disease. Report of subcommittee on standardization of diagnostic criteria and reporting of coronary artery lesions in Kawasaki disease. Tokyo: Ministry of Health and Welfare; 1984. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=410827 Accessed 10 Oct 2023.

  29. Kobayashi T, Fuse S, Sakamoto N, Mikami M, Ogawa S, Hamaoka K, et al. A new Z score curve of the coronary arterial internal diameter using the lambda-mu-sigma method in a pediatric population. J Am Soc Echocardiogr. 2016;29:794-801.e29. https://doi.org/10.1016/j.echo.2016.03.017.

    Article  PubMed  Google Scholar 

  30. Fuse S, Kobayashi T, Arakaki Y, Ogawa S, Katoh H, Sakamoto N, et al. Standard method for ultrasound imaging of coronary artery in children. Pediatr Int. 2010;52:876–82. https://doi.org/10.1111/j.1442-200X.2010.03252.x.

    Article  PubMed  Google Scholar 

  31. Tremoulet AH, Best BM, Song S, Wang S, Corinaldesi E, Eichenfield JR, et al. Resistance to intravenous immunoglobulin in children with Kawasaki disease. J Pediatr. 2008;153:117–21. https://doi.org/10.1016/j.jpeds.2007.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24:15657. https://doi.org/10.1038/nbt1206-1565.

    Article  CAS  Google Scholar 

  33. Association for Computing Machinery Special Interest Group on Management of Data & ACM Special Interest Group on Knowledge Discovery in Data. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM; 2016.

  34. Rahman T, Khandakar A, Abir FF, Faisal MAA, Hossain MS, Podder KK, et al. QCovSML: a reliable COVID-19 detection system using CBC biomarkers by a stacking machine learning model. Comput Biol Med. 2022;143: 105284. https://doi.org/10.1016/j.compbiomed.2022.105284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodríguez-Pérez R, Bajorath J. Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions. J Comput Aided Mol Des. 2020;34:1013–26. https://doi.org/10.1007/s10822-020-00314-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: von Luxburg U, Guyon I, Bengio S, Wallach H, Fergus R (eds) Proceedings of the 31st international conference on neural information processing systems. Red Hook: Curran Associates; 2017; pp. 4768–77.

  37. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell. 2020;2:56–67. https://doi.org/10.1038/s42256-019-0138-9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8. https://doi.org/10.1038/bmt.2012.244.

    Article  CAS  PubMed  Google Scholar 

  39. Kanai T, Takeshita S, Kawamura Y, Kinoshita K, Nakatani K, Iwashima S, et al. The combination of the neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios as a novel predictor of intravenous immunoglobulin resistance in patients with Kawasaki disease: a multicenter study. Heart Vessels. 2020;35:1463–72. https://doi.org/10.1007/s00380-020-01622-z.

    Article  PubMed  Google Scholar 

  40. Kuniyoshi Y, Tsujimoto Y, Banno M, Taito S, Ariie T, Takahashi N, et al. Prediction models for intravenous immunoglobulin resistance in Kawasaki disease: a meta-analysis. Pediatrics. 2023;151: e2022059175. https://doi.org/10.1542/peds.2022-059175.

    Article  PubMed  Google Scholar 

  41. Debray TPA, Damen JAAG, Snell KIE, Ensor J, Hooft L, Reitsma JB, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356: i6460. https://doi.org/10.1136/bmj.i6460.

    Article  PubMed  Google Scholar 

  42. Andaur Navarro CL, Damen JAA, Takada T, Nijman SWJ, Dhiman P, Ma J, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ. 2021;375: n2281. https://doi.org/10.1136/bmj.n2281.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tsoukas P, Yeung RSM. Kawasaki disease and MIS-C share a host immune response. Nat Rev Rheumatol. 2022;18:555–6. https://doi.org/10.1038/s41584-022-00820-5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ghosh P, Katkar GD, Shimizu C, Kim J, Khandelwal S, Tremoulet AH, et al. An Artificial Intelligence-guided signature reveals the shared host immune response in MIS-C and Kawasaki disease. Nat Commun. 2022;13:2687. https://doi.org/10.1038/s41467-022-30357-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshikane Y, Okuma Y, Miyamoto T, Hashimoto J, Fukazawa R, Kato T, et al. Serum tenascin-C predicts resistance to steroid combination therapy in high-risk Kawasaki disease: a multicenter prospective cohort study. Pediatr Rheumatol Online J. 2021;19:82. https://doi.org/10.1186/s12969-021-00562-w.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kitoh T, Ohara T, Muto T, Okumura A, Baba R, Koizumi Y, et al. Increased pentraxin 3 levels correlate with IVIG responsiveness and coronary artery aneurysm formation in Kawasaki disease. Front Immunol. 2021;12: 624802. https://doi.org/10.3389/fimmu.2021.624802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen Z, Sai S, Nagumo K, Wu Y, Chiba H, Hui SP. Distinctive serum lipidomic profile of IVIG-resistant Kawasaki disease children before and after treatment. PLoS ONE. 2023;18: e0283710. https://doi.org/10.1371/journal.pone.0283710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kobayashi T, Ayusawa M, Suzuki H, Abe J, Ito S, Kato T, et al. Revision of diagnostic guidelines for Kawasaki disease (6th revised edition). Pediatr Int. 2020;62:1135–8. https://doi.org/10.1111/ped.14326.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the current and former members of the Shizuoka Kawasaki Disease Study Group for their cooperation in conducting this study. We also thank Hidemasa Sakai, Department of Pediatrics, Shizuoka City Shizuoka Hospital; Shinichiro Sano, Department of Diabetes and Metabolism, Shizuoka Children’s Hospital; Naoe Akiyama, Department of Pediatrics, Fuji City General Hospital; Masashi Harazaki, Department of Pediatrics, Medical Genetics, Shizuoka General Hospital; Tetuya Fukuoka, Department of Pediatrics, Shizuoka Saiseikai General Hospital; and Isao Miyairi, Department of Pediatrics, Hamamatsu University School of Medicine. ChatGPT was used for English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Iwashima.

Ethics declarations

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of Interest

Yoshifumi Miyagi and Satoru Iwashima declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical Approval

The study protocol conformed to the principles of the Declaration of Helsinki and was approved by the Ethics Committee of Chutoen Medical Center (approval date: 5 August, 2019; approval number: 100).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Author Contributions

All authors made substantial contributions to the conception of the study. All authors read and approved the final manuscript. YM and SI interpreted the data and wrote the paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 883 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagi, Y., Iwashima, S. Prediction Models for Intravenous Immunoglobulin Non-Responders of Kawasaki Disease Using Machine Learning. Clin Drug Investig 44, 425–437 (2024). https://doi.org/10.1007/s40261-024-01373-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-024-01373-z

Navigation