Log in

Sodium Phenylbutyrate and Tauroursodeoxycholic Acid: A Story of Hope Turned to Disappointment in Amyotrophic Lateral Sclerosis Treatment

  • Review Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

The absence of a definitive cure for amyotrophic lateral sclerosis (ALS) emphasizes the crucial need to explore new and improved treatment approaches for this fatal, progressive, and disabling neurodegenerative disorder. As at the end of 2023, five treatments – riluzole, edaravone, dextromethorphan hydrobromide + quinidine sulfate (DHQ), tofersen, and sodium phenylbutyrate-tauroursodeoxycholic acid (PB-TUDCA) – were FDA approved for the treatment of patients with ALS. Among them PB-TUDCA has been shown to impact DNA processing impairments, mitochondria dysfunction, endoplasmic reticulum stress, oxidative stress, and pathologic folded protein agglomeration defects, which have been associated with ALS pathophysiology. The Phase 2 CENTAUR trial demonstrated significant impact of PB-TUDCA on the ALS Functional Rating Scale-Revised (ALSFRS-R) risk of death, hospitalization, and the need for tracheostomy or permanent assisted ventilation in patients with ALS based on post hoc analyses. More recently, contrasting with the CENTAUR trial results, results from the Phase 3 PHOENIX trial (NCT05021536) showed no change in ALSFRS-R total score at 48 weeks. Consequently, the sponsor company initiated the process with the US FDA and Health Canada to voluntarily withdraw the marketing authorizations for PB-TUDCA. In the present article, we review ALS pathophysiology, with a focus on PB-TUDCA’s proposed mechanisms of action and recent clinical trial results and discuss the implications of conflicting trial data for ALS and other neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Johnson SA, Fang T, De Marchi F, Neel D, Van Weehaeghe D, Berry JD, et al. Pharmacotherapy for amyotrophic lateral sclerosis: a review of approved and upcoming agents. Drugs. 2022;82(13):1367–88.

    Article  PubMed  Google Scholar 

  2. Lederer CW, Torrisi A, Pantelidou M, Santama N, Cavallaro S. Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics. 2007;8:26.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wolf J, Safer A, Wöhrle JC, Palm F, Nix WA, Maschke M, et al. Causes of death in amyotrophic lateral sclerosis: results from the Rhineland-Palatinate ALS registry. Nervenarzt. 2017;88(8):911–8.

    Article  CAS  PubMed  Google Scholar 

  4. Konrad C, Kawamata H, Bredvik KG, Arreguin AJ, Cajamarca SA, Hupf JC, et al. Fibroblast bioenergetics to classify amyotrophic lateral sclerosis patients. Mol Neurodegener. 2017;12(1):76.

    Article  PubMed  PubMed Central  Google Scholar 

  5. McCauley ME, Baloh RH. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol. 2019;137(5):715–30.

    Article  CAS  PubMed  Google Scholar 

  6. Ketabforoush AHME, Chegini R, Barati S, Tahmasebi F, Moghisseh B, Joghataei MT, et al. Masitinib: the promising actor in the next season of the Amyotrophic Lateral Sclerosis treatment series. Biomed Pharmacother. 2023;160: 114378.

    Article  CAS  PubMed  Google Scholar 

  7. Ferrara D, Pasetto L, Bonetto V, Basso M. Role of extracellular vesicles in amyotrophic lateral sclerosis. Front Neurosci. 2018;12:574.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Soo KY, Halloran M, Sundaramoorthy V, Parakh S, Toth RP, Southam KA, et al. Rab1-dependent ER-Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS. Acta Neuropathol. 2015;130(5):679–97.

    Article  CAS  PubMed  Google Scholar 

  9. Fels JA, Casalena G, Konrad C, Holmes HE, Dellinger RW, Manfredi G. Gene expression profiles in sporadic ALS fibroblasts define disease subtypes and the metabolic effects of the investigational drug EH301. Hum Mol Genet. 2022;31(20):3458–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cho H, Shukla S. Role of edaravone as a treatment option for patients with amyotrophic lateral sclerosis. Pharmaceuticals. 2021;14(1):29.

    Article  CAS  Google Scholar 

  11. Watanabe K, Tanaka M, Yuki S, Hirai M, Yamamoto Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr. 2018;62(1):20–38.

    Article  CAS  PubMed  Google Scholar 

  12. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017;16(7):505–12.

  13. Andrews JA, Jackson CE, Heiman-Patterson TD, Bettica P, Brooks BR, Pioro EP. Real-world evidence of riluzole effectiveness in treating amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(7–8):509–18.

    Article  CAS  PubMed  Google Scholar 

  14. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, et al. Correction: amyotrophic lateral sclerosis. Nat Rev Dis Primers. 2017;3(1):17085.

    Article  PubMed  Google Scholar 

  15. De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? Neurobiol Dis. 2017;105:283–99.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol. 2011;7(11):639–49.

    Article  CAS  PubMed  Google Scholar 

  17. Fels JA, Dash J, Leslie K, Manfredi G, Kawamata H. Effects of PB-TURSO on the transcriptional and metabolic landscape of sporadic ALS fibroblasts. Ann Clin Transl Neurol. 2022;9(10):1551–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peña-Quintana L, Llarena M, Reyes-Suárez D, Aldámiz-Echevarria L. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives. Patient Prefer Adherence. 2017;11:1489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cudkowicz ME, Andres PL, Macdonald SA, Bedlack RS, Choudry R, Brown RH Jr, et al. Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph Lateral Scler. 2009;10(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  20. Iannitti T, Palmieri B. Clinical and experimental applications of sodium phenylbutyrate. Drugs R&D. 2011;11(3):227–49.

    Article  Google Scholar 

  21. Lo Giudice M, Cocco A, Reggiardo G, Lalli S, Albanese A. Tauro-Urso-Deoxycholic acid trials in amyotrophic lateral sclerosis: What is achieved and what to expect. Clin Drug Investig. 2023;43(12):893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elia AE, Lalli S, Monsurrò MR, Sagnelli A, Taiello AC, Reggiori B, et al. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur J Neurol. 2016;23(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  23. Kusaczuk M. Tauroursodeoxycholate—bile acid with chaperoning activity: molecular and cellular effects and therapeutic perspectives. Cells. 2019;8(12):1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zangerolamo L, Vettorazzi JF, Rosa LR, Carneiro EM, Barbosa HC. The bile acid TUDCA and neurodegenerative disorders: an overview. Life Sci. 2021;272: 119252.

    Article  CAS  PubMed  Google Scholar 

  25. Paganoni S, Hendrix S, Dickson SP, Knowlton N, Macklin EA, Berry JD, et al. Long-term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis. Muscle Nerve. 2021;63(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  26. Paganoni S, Macklin EA, Hendrix S, Berry JD, Elliott MA, Maiser S, et al. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. N Engl J Med. 2020;383(10):919–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wolfson C, Gauvin DE, Ishola F, Oskoui M. Global prevalence and incidence of amyotrophic lateral sclerosis: a systematic review. Neurology. 2023;101(6):e613–23.

    Article  PubMed  Google Scholar 

  28. Bucheli M, Andino A, Montalvo M, Cruz J, Atassi N, Berry J, et al. Amyotrophic lateral sclerosis: analysis of ALS cases in a predominantly admixed population of Ecuador. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15(1–2):106–13.

    Article  PubMed  Google Scholar 

  29. Kihira T, Yoshida S, Kondo T, Iwai K, Wada S, Morinaga S, et al. An increase in ALS incidence on the Kii Peninsula, 1960–2009: a possible link to change in drinking water source. Amyotroph Lateral Scler. 2012;13(4):347–50.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mehta P, Raymond J, Punjani R, Han M, Larson T, Kaye W, et al. Prevalence of amyotrophic lateral sclerosis in the United States using established and novel methodologies. Amyotroph Lateral Scler Frontotemporal Degener. 2017;2022:1–9.

    Google Scholar 

  31. D’Antona S, Caramenti M, Porro D, Castiglioni I, Cava C. Amyotrophic lateral sclerosis: a diet review. Foods. 2021;10(12):3128.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ingre C, Roos PM, Piehl F, Kamel F, Fang F. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 2015;7:181–93.

    PubMed  PubMed Central  Google Scholar 

  33. Mitsumoto H, Chiuzan C, Gilmore M, Zhang Y, Ibagon C, McHale B, et al. A novel muscle cramp scale (MCS) in amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler Frontotemporal Degener. 2019;20(5–6):328–35.

    Article  PubMed  Google Scholar 

  34. Malacarne C, Galbiati M, Giagnorio E, Cavalcante P, Salerno F, Andreetta F, et al. Dysregulation of muscle-specific microRNAs as common pathogenic feature associated with muscle atrophy in ALS, SMA and SBMA: evidence from animal models and human patients. Int J Mol Sci. 2021;22(11):5673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu J, Li Y, Niu J, Zhang L, Fan J, Guan Y, et al. Fasciculation differences between ALS and non-ALS patients: an ultrasound study. BMC Neurol. 2021;21(1):441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trojsi F, Di Nardo F, D'Alvano G, Caiazzo G, Passaniti C, Mangione A, et al. Resting state fMRI analysis of pseudobulbar affect in Amyotrophic Lateral Sclerosis (ALS): motor dysfunction of emotional expression. Brain Imaging Behav. 2022;17(1):77–89.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1(5):293–9.

    Article  CAS  PubMed  Google Scholar 

  38. Shefner JM, Al-Chalabi A, Baker MR, Cui L-Y, de Carvalho M, Eisen A, et al. A proposal for new diagnostic criteria for ALS. Clin Neurophysiol. 2020;131(8):1975–8.

    Article  PubMed  Google Scholar 

  39. Hannaford A, Pavey N, van den Bos M, Geevasinga N, Menon P, Shefner JM, et al. Diagnostic utility of gold coast criteria in amyotrophic lateral sclerosis. Ann Neurol. 2021;89(5):979–86.

    Article  PubMed  Google Scholar 

  40. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci. 1999;169(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  41. Franchignoni F, Mora G, Giordano A, Volanti P, Chiò A. Evidence of multidimensionality in the ALSFRS-R Scale: a critical appraisal on its measurement properties using Rasch analysis. J Neurol Neurosurg Psychiatry. 2013;84(12):1340–5.

    Article  PubMed  Google Scholar 

  42. Arjmand B, Kokabi Hamidpour S, Rabbani Z, Tayanloo-Beik A, Rahim F, Aghayan HR, et al. Organ on a chip: a novel in vitro biomimetic strategy in amyotrophic lateral sclerosis (ALS) modeling. Front Neurol. 2022. https://doi.org/10.3389/fneur.2021.788462.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Alavi-Moghadam S, Kokabi-Hamidpour S, Rezaei-Tavirani M, Larijani B, Arjmand R, Rahim F, et al. Neuromuscular junction-on-a-chip for amyotrophic lateral sclerosis modeling. InStem Cells Lineage Commit: Methods Protoc. 2023;2736:139–50.

    Google Scholar 

  44. Azedi F, Tavakol S, Ketabforoush A, Khazaei G, Bakhtazad A, Mousavizadeh K, et al. Modulation of autophagy by melatonin via sirtuins in stroke: from mechanisms to therapies. Life Sci. 2022;307: 120870.

    Article  CAS  PubMed  Google Scholar 

  45. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dafinca R, Barbagallo P, Talbot K. The role of mitochondrial dysfunction and ER stress in TDP-43 and C9ORF72 ALS. Front Cell Neurosci. 2021;15: 653688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Popper B, Scheidt T, Schieweck R. RNA-binding protein dysfunction in neurodegeneration. Essays Biochem. 2021;65(7):975–86.

    Article  CAS  PubMed  Google Scholar 

  48. Dalla Bella E, Bersano E, Antonini G, Borghero G, Capasso M, Caponnetto C, et al. The unfolded protein response in amyotrophic later sclerosis: results of a phase 2 trial. Brain. 2021;144(9):2635–47.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nabizadeh F, Nikfarjam M, Azami M, Sharifkazemi H, Sodeifian F. Pseudobulbar affect in neurodegenerative diseases: a systematic review and meta-analysis. J Clin Neurosci. 2022;100:100–7.

    Article  PubMed  Google Scholar 

  50. Ghemrawi R, Khair M. Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int J Mol Sci. 2020;21(17):6127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nishino K, Watanabe S, Shijie J, Murata Y, Oiwa K, Komine O, et al. Mice deficient in the C-terminal domain of TAR DNA-binding protein 43 develop age-dependent motor dysfunction associated with impaired Notch1-Akt signaling pathway. Acta Neuropathol Commun. 2019;7(1):118.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Beyer L, Günther R, Koch JC, Klebe S, Hagenacker T, Lingor P, et al. TDP-43 as structure-based biomarker in amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2021;8(1):271–7.

    Article  CAS  PubMed  Google Scholar 

  53. Salvatori I, Ferri A, Scaricamazza S, Giovannelli I, Serrano A, Rossi S, et al. Differential toxicity of TAR DNA-binding protein 43 isoforms depends on their submitochondrial localization in neuronal cells. J Neurochem. 2018;146(5):585–97.

    Article  CAS  PubMed  Google Scholar 

  54. Peng H, Yao F, Zhao J, Zhang W, Chen L, Wang X, et al., editors. Unraveling mitochondria‐targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials. Exploration; 2023: https://doi.org/10.1002/EXP.20220115.

  55. Chenna S, Koopman WJ, Prehn JH, Connolly NM. Mechanisms and mathematical modeling of ROS production by the mitochondrial electron transport chain. Am J Physiol Cell Physiol. 2022;323(1):C69–83.

    Article  CAS  PubMed  Google Scholar 

  56. Peggion C, Scalcon V, Massimino ML, Nies K, Lopreiato R, Rigobello MP, et al. SOD1 in ALS: taking stock in pathogenic mechanisms and the role of glial and muscle cells. Antioxidants. 2022;11(4):614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gosset P, Camu W, Raoul C, Mezghrani A. Prionoids in amyotrophic lateral sclerosis. Brain Commun. 2022;4(3): fcac145.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Esmaeili Y, Yarjanli Z, Pakniya F, Bidram E, Łos MJ, Eshraghi M, et al. Targeting autophagy, oxidative stress, and ER stress for neurodegenerative disease treatment. J Control Release. 2022;345:147–75.

    Article  CAS  PubMed  Google Scholar 

  59. Sayyad Z, Kaveti S, Bhattacharjee D, Vedagiri D, Jain N, Swarup G. A glaucoma-associated OPTN polymorphism, M98K sensitizes retinal cells to endoplasmic reticulum stress and tumour necrosis factor α. FEBS J. 2023;290:3110–27.

    Article  CAS  PubMed  Google Scholar 

  60. Guo X, Namekata K, Kimura A, Harada C, Harada T. ASK1 in neurodegeneration. Adv Biol Regul. 2017;66:63–71.

    Article  CAS  PubMed  Google Scholar 

  61. Wang C, Chang Y, Zhu J, Ma R, Li G. Dual role of inositol-requiring enzyme 1α-X-box binding protein 1 signaling in neurodegenerative diseases. Neuroscience. 2022;505:157–70.

    Article  CAS  PubMed  Google Scholar 

  62. Jeon Y-M, Kwon Y, Lee S, Kim H-J. Potential roles of the endoplasmic reticulum stress pathway in amyotrophic lateral sclerosis. Front Aging Neurosci. 2023;15:1047897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maestro I, de la Ballina LR, Porras G, Corrochano S, De Lago E, Simonsen A, et al. Discovery of mitophagy inhibitors with therapeutic potential in different familial amyotrophic lateral sclerosis mutations. Int J Mol Sci. 2022;23(20):12676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baade I, Hutten S, Sternburg EL, Pörschke M, Hofweber M, Dormann D, et al. The RNA-binding protein FUS is chaperoned and imported into the nucleus by a network of import receptors. J Biol Chem. 2021;296: 100659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McGoldrick P, Lau A, You Z, Durcan TM, Robertson J. Loss of C9orf72 perturbs the Ran-GTPase gradient and nucleocytoplasmic transport, generating compositionally diverse Importin β-1 granules. Cell Rep. 2023;42(3): 112134.

    Article  CAS  PubMed  Google Scholar 

  66. Kaur SJ, McKeown SR, Rashid S. Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis. Gene. 2016;577(2):109–18.

    Article  CAS  PubMed  Google Scholar 

  67. Norris SP, Likanje MN, Andrews JA. Amyotrophic lateral sclerosis: update on clinical management. Curr Opin Neurol. 2020;33(5):641–8.

    Article  CAS  PubMed  Google Scholar 

  68. Smith R, Pioro E, Myers K, Sirdofsky M, Goslin K, Meekins G, et al. Enhanced bulbar function in amyotrophic lateral sclerosis: the Nuedexta treatment trial. Neurotherapeutics. 2017;14:762–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Garuti G, Rao F, Ribuffo V, Sansone VA. Sialorrhea in patients with ALS: current treatment options. Degener Neurol Neuromuscul Dis. 2019;9:19–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Witzel S, Maier A, Steinbach R, Grosskreutz J, Koch JC, Sarikidi A, et al. Safety and effectiveness of long-term intravenous administration of edaravone for treatment of patients with amyotrophic lateral sclerosis. JAMA Neurol. 2022;79(2):121–30.

    Article  PubMed  Google Scholar 

  71. Lunetta C, Moglia C, Lizio A, Caponnetto C, Dubbioso R, Giannini F, et al. The Italian multicenter experience with edaravone in amyotrophic lateral sclerosis. J Neurol. 2020;267(11):3258–67.

    Article  CAS  PubMed  Google Scholar 

  72. Okada M, Yamashita S, Ueyama H, Ishizaki M, Maeda Y, Ando Y. Long-term effects of edaravone on survival of patients with amyotrophic lateral sclerosis. eNeurologicalSci. 2018;11:11–4.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Houzen H, Kano T, Horiuchi K, Wakita M, Nagai A, Yabe I. Improved long-term survival with edaravone therapy in patients with amyotrophic lateral sclerosis: a retrospective single-center study in Japan. Pharmaceuticals. 2021;14(8):705.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Brooks BR, Berry JD, Ciepielewska M, Liu Y, Zambrano GS, Zhang J, et al. Intravenous edaravone treatment in ALS and survival: an exploratory, retrospective, administrative claims analysis. eClinicalMedicine. 2022;52: 101590.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med. 1994;330(9):585–91.

    Article  CAS  PubMed  Google Scholar 

  76. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Powe L, Durrleman S, et al. A confirmatory dose-ranging study of riluzole in ALS. ALS/Riluzole Study Group-II. Neurology. 1996;47(6 Suppl 4):S242–50.

    CAS  PubMed  Google Scholar 

  77. Miller T, Cudkowicz M, Shaw PJ, Andersen PM, Atassi N, Bucelli RC, et al. Phase 1–2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med. 2020;383(2):109–19.

    Article  CAS  PubMed  Google Scholar 

  78. Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, Bucelli RC, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med. 2022;387(12):1099–110.

    Article  CAS  PubMed  Google Scholar 

  79. Benatar M, Wuu J, Andersen PM, Bucelli RC, Andrews JA, Otto M, et al. Design of a randomized, placebo-controlled, phase 3 trial of tofersen initiated in clinically presymptomatic SOD1 variant carriers: the ATLAS study. Neurotherapeutics. 2022;19(4):1248–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. ALS Association. (2023). Tofersen. Accessed May 17, 2024 from https://www.als.org/navigating-als/living-with-als/fda-approved-drugs/tofersen#:~:text=Current%20Status,under%20the%20accelerated%20approval%20pathway%20.

  81. Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999;159(22):2647–58.

    Article  CAS  PubMed  Google Scholar 

  82. Ayaz A, Jalal A, Qian Z, Khan KA, Liu L, Hu C, et al. Investigating the effects of tauroursodeoxycholic acid (TUDCA) in mitigating endoplasmic reticulum stress and cellular responses in Pak choi. Physiol Plant. 2024;176(2): e14246.

    Article  CAS  PubMed  Google Scholar 

  83. **e Q, Khaoustov VI, Chung CC, Sohn J, Krishnan B, Lewis DE, et al. Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress–induced caspase-12 activation. Hepatology. 2002;36(3):592–601.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang L, Wang Y. Tauroursodeoxycholic acid alleviates H2O2-induced oxidative stress and apoptosis via suppressing endoplasmic reticulum stress in neonatal rat cardiomyocytes. Dose-Response. 2018;16(3):1559325818782631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Khalaf K, Tornese P, Cocco A, Albanese A. Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases. Transl Neurodegener. 2022;11(1):33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Patel S, Pangarkar A, Mahajan S, Majumdar A. Therapeutic potential of endoplasmic reticulum stress inhibitors in the treatment of diabetic peripheral neuropathy. Metab Brain Dis. 2023;38(6):1841–56.

    Article  CAS  PubMed  Google Scholar 

  87. Oishi K, Diaz GA. Glycerol phenylbutyrate for the chronic management of urea cycle disorders. Expert Rev Endocrinol Metab. 2014;9(5):427–34.

    Article  CAS  PubMed  Google Scholar 

  88. Iannitti T, Palmieri B. Clinical and experimental applications of sodium phenylbutyrate. Drugs R&D. 2011;11:227–49.

    Article  Google Scholar 

  89. Gore SD, Carducci MA. Modifying histones to tame cancer: clinical development of sodium phenylbutyrate and other histone deacetylase inhibitors. Expert Opin Investig Drugs. 2000;9(12):2923–34.

    Article  CAS  PubMed  Google Scholar 

  90. Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH, et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem. 2005;93(5):1087–98.

    Article  CAS  PubMed  Google Scholar 

  91. Fels JA, Dash J, Leslie K, Manfredi G, Kawamata H. Effects of the investigational drug sodium phenylbutyrate-TUDCA (AMX0035) on the transcriptional and metabolic landscape of sporadic ALS fibroblasts. bioRxiv. 2022:2022.05.02.490306.

  92. Roy A, Ghosh A, Jana A, Liu X, Brahmachari S, Gendelman HE, et al. Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson’s disease. PLoS One. 2012;7(6): e38113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. HOLMES WL. Drugs affecting lipid synthesis. Medicinal Chemistry. 2: Elsevier; 1964. pp. 131–84.

  94. De Marchi F, Munitic I, Vidatic L, Papić E, Rački V, Nimac J, et al. Overlap** neuroimmune mechanisms and therapeutic targets in neurodegenerative disorders. Biomedicines. 2023;11(10):2793.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Min J-H, Hong Y-H, Sung J-J, Kim S-M, Lee JB, Lee K-W. Oral solubilized ursodeoxycholic acid therapy in amyotrophic lateral sclerosis: a randomized cross-over trial. J Korean Med Sci. 2012;27(2):200–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Parry GJ, Rodrigues CMP, Aranha MM, Hilbert SJ, Davey C, Kelkar P, et al. Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic acid in patients with amyotrophic lateral sclerosis. Clin Neuropharmacol. 2010;33(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  97. Khalaf K, Tornese P, Cocco A, Albanese A. Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases. Transl Neurodegener. 2022;11(1):1–17.

    Article  Google Scholar 

  98. Zucchi E, Musazzi UM, Fedele G, Martinelli I, Gianferrari G, Simonini C, et al. Effect of tauroursodeoxycholic acid on survival and safety in amyotrophic lateral sclerosis: a retrospective population-based cohort study. eClinicalMedicine. 2023;65: 102256.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yadav K, Lewis RJ. Immortal time bias in observational studies. JAMA. 2021;325(7):686–7.

    Article  PubMed  Google Scholar 

  100. Albanese A, Ludolph AC, McDermott CJ, Corcia P, Van Damme P, Van den Berg LH, et al. Tauroursodeoxycholic acid in patients with amyotrophic lateral sclerosis: the TUDCA-ALS trial protocol. Front Neurol. 2022;13:1009113.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lombardo FL, Alegiani SS, Mayer F, Cipriani M, Giudice ML, Ludolph AC, et al. A randomized double-blind clinical trial on safety and efficacy of tauroursodeoxycholic acid (TUDCA) as add-on treatment in patients affected by amyotrophic lateral sclerosis (ALS): the statistical analysis plan of TUDCA-ALS trial. 2023.

  102. Bowser R, An J, Mehta L, Chen J, Timmons J, Cudkowicz M, et al. Effect of sodium phenylbutyrate and taurursodiol on plasma concentrations of neuroinflammatory biomarkers in amyotrophic lateral sclerosis: results from the CENTAUR trial. J Neurol Neurosurg Psychiatry. 2023. https://doi.org/10.1136/jnnp-2023-332106.

    Article  Google Scholar 

  103. Paganoni S, Watkins C, Cawson M, Hendrix S, Dickson SP, Knowlton N, et al. Survival analyses from the CENTAUR trial in amyotrophic lateral sclerosis: evaluating the impact of treatment crossover on outcomes. Muscle Nerve. 2022;66(2):136–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Paganoni S, Hendrix S, Dickson SP, Knowlton N, Berry JD, Elliott MA, et al. Effect of sodium phenylbutyrate/taurursodiol on tracheostomy/ventilation-free survival and hospitalisation in amyotrophic lateral sclerosis: long-term results from the CENTAUR trial. J Neurol Neurosurg Psychiatry. 2022;93(8):871–5.

    Article  PubMed  Google Scholar 

  105. Food and Drug Administration (FDA). (September 30, 2022). Center for drug evaluation and research, application number: 216660Orig1s000 summary review. Accessed May 8, 2024 from https://www.accessdata.fda.gov/drugsatfda_docs/nda/2022/216660Orig1s000SumR.pdf

  106. FDA. (March 30, 2022). AMX0035 FOR TREATMENT OF ALS. Accessed May 22, 2024 from https://www.fda.gov/media/157187/download

  107. Olivia Novins MD, Carrie Jones. (2023). Relyvrio Approval: Lessons Learned. Accessed May 8, 2024 from https://www.parexel.com/insights/article/relyvrio-approval-lessons-learned

  108. Leonard Van den Berg RPAvE, Ryan Miller, Feifan Zhang, Yuehui Wu, Suzanne Bijl, Jamie Timmons, Lahar Mehta, Sabrina Paganoni. (2024, April 13 - 18, 2024). Results From a Global Phase 3 Trial Evaluating an Oral, Fixed-Dose Combination of Sodium Phenylbutyrate and Taurursodiol in

  109. Amyotrophic Lateral Sclerosis. American Academy of Neurology Annual Meeting 2024. https://www.aan.com/siteassets/home-page/conferences-and-community/annual-meeting/abstracts-and-awards/abstracts/24-am-emerging-science-abstracts.pdf

  110. American Academy of Neurology Annual Meeting. (April 18, 2024). Results From a Global Phase 3 Trial Evaluating an Oral, Fixed-Dose Combination of Sodium Phenylbutyrate and Taurursodiol in Amyotrophic Lateral Sclerosis. Accessed May 9, 2024 from https://www.amylyx.com/document/final-aan-oral-presentation.pdf

  111. Amylyx Pharmaceuticals. (April 4, 2024). Amylyx Pharmaceuticals Announces Formal Intention to Remove RELYVRIO®/ALBRIOZA™ from the Market; Provides Updates on Access to Therapy, Pipeline, Corporate Restructuring, and Strategy. Accessed May 8, 2024 from https://www.amylyx.com/news/amylyx-pharmaceuticals-announces-formal-intention-to-remove-relyvrior/albriozatm-from-the-market-provides-updates-on-access-to-therapy-pipeline-corporate-restructuring-and-strategy

  112. Attarian S, Vallat J-M, Magy L, Funalot B, Gonnaud P-M, Lacour A, et al. An exploratory randomised double-blind and placebo-controlled phase 2 study of a combination of baclofen, naltrexone and sorbitol (PXT3003) in patients with Charcot-Marie-Tooth disease type 1A. Orphanet J Rare Dis. 2014;9:1–15.

    Article  Google Scholar 

  113. Attarian S, Young P, Brannagan TH, Adams D, Van Damme P, Thomas FP, et al. A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of Charcot–Marie–Tooth type 1A. Orphanet J Rare Dis. 2021;16(1):433.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pharnext. (December 11, 2023). Pharnext reports topline results from the pivotal Phase III clinical trial (PREMIER trial) of PXT3003 in Charcot-Marie-Tooth disease type 1A. Accessed May 13, 2024 from https://pharnext.com/en/press-releases/pharnext-reports-topline-results-from-the-pivotal-phase-iii-clinical-trial-premier-trial-of-pxt3003-in-charcot-marie-tooth-disease-type-1a

  115. Pharnext. (December 19, 2023). Pharnext intends to prepare registration and marketing authorization dossiers for PXT3003, its drug candidate in Charcot-Marie-Tooth disease type 1A. Accessed May 13, 2024 from https://pharnext.com/en/press-releases/pharnext-intends-to-prepare-registration-and-marketing-authorization-dossiers-for-pxt3003-its-drug-candidate-in-charcot-marie-tooth-disease-type-1a

  116. Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prevent Alzheimer’s Dis. 2022;9(2):197–210.

    CAS  Google Scholar 

  117. Tampi RR, Forester BP, Agronin M. Aducanumab: evidence from clinical trial data and controversies. Drugs Context. 2021. https://doi.org/10.7573/dic.2021-7-3.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Biogen. (November 6, 2020). Update on FDA advisory committee’s meeting on aducanumab in Alzheimer’s disease. Accessed May 13, 2024 from https://investors.biogen.com/news-releases/news-release-details/update-fda-advisory-committees-meeting-aducanumab-alzheimers

  119. Fleck LM. Alzheimer’s and aducanumab: unjust profits and false hopes. Hastings Cent Rep. 2021;51(4):9–11.

    Article  PubMed  Google Scholar 

  120. Mullard A. FDA approval for Biogen’s aducanumab sparks Alzheimer disease firestorm. Nat Rev Drug Discov. 2021;20(7):496.

    PubMed  Google Scholar 

  121. FDA. Food and Drug Administration Moderization Act of 1997 Public law 105-115– November 21, 1997. Accessed May 13, 2024 from https://www.govinfo.gov/content/pkg/PLAW-105publ115/pdf/PLAW-105publ115.pdf

  122. Morant AV, Jagalski V, Vestergaard HT. Characteristics of single pivotal trials supporting regulatory approvals of novel non-orphan, non-oncology drugs in the European Union and United States from 2012–2016. Clin Transl Sci. 2019;12(4):361–70.

    Article  PubMed  PubMed Central  Google Scholar 

  123. (EMA) EMA. (October 12, 2023). EU/3/20/2284 - orphan designation for treatment of amyotrophic lateral sclerosis. Accessed May 8, 2024 from https://www.ema.europa.eu/en/medicines/human/orphan-designations/eu-3-20-2284

  124. National Library of Medicine. (Janurary 5, 2024). Extension Study Evaluating The Safety And Tolerability of AMX0035. Accessed May 7, 2024 from https://clinicaltrials.gov/search?cond=ALS%20-%20Amyotrophic%20Lateral%20Sclerosis&intr=TUDCA&page=1&viewType=Table

  125. National Library of Medicine. (Janurary 6, 2023). Phase III Trial of AMX0035 for Amyotrophic Lateral Sclerosis Treatment (Phoenix). Accessed May 8, 2024 from https://clinicaltrials.gov/study/NCT05021536?cond=ALS%20-%20Amyotrophic%20Lateral%20Sclerosis&intr=TUDCA&page=1&viewType=Table&rank=10

  126. National Library of Medicine. (April 7, 2023). A compassionate use protocol of AMX0035 for treatment of patients with amyotrophic lateral sclerosis (ALS). Accessed May 8,, 2024 from https://clinicaltrials.gov/study/NCT04516096?cond=ALS%20-%20Amyotrophic%20Lateral%20Sclerosis&intr=TUDCA&page=1&viewType=Table&rank=8

  127. National Library of Medicine. (March 3, 2023). Open Label Extension of TUDCA-ALS Study (TUDCA-ALS OLE). Accessed May 8, 2024 from https://clinicaltrials.gov/study/NCT05753852?cond=ALS%20-%20Amyotrophic%20Lateral%20Sclerosis&intr=TUDCA&page=1&viewType=Table&rank=2

  128. National Library of Medicine. (April 5, 2022). Mitochondrial Capacity Boost in ALS (MICABO-ALS) Trial (MICABO-ALS). Accessed May 8, 2024 from https://clinicaltrials.gov/study/NCT04244630?cond=ALS%20-%20Amyotrophic%20Lateral%20Sclerosis&intr=TUDCA&page=1&viewType=Table&rank=5

  129. National Library of Medicine. (July 10, 2023). Safety and Efficacy of TUDCA as add-on Treatment in Patients Affected by ALS (TUDCA-ALS). Accessed May 8, 2024 from https://clinicaltrials.gov/study/NCT03800524?cond=ALS%20-%20Amyotrophic%20Lateral%20Sclerosis&intr=TUDCA&page=1&viewType=Table&rank=1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. David Arnold.

Ethics declarations

Competing Interests

WDA: Research Funding from NMD Pharma and Avidity Biosciences, Consulting for NMD Pharma, Avidity Biosciences, Dyne Therapeutics, Novartis, Design Therapeutics, Catalyst Pharmaceuticals, Novartis. Other authors claim that there are no conflicts of interest.

Availability of Data and Material

All data reviewed are included in the manuscript.

Authors' Contributions

AK and WDA participated in the review conception and design. Rest of authors equally contributed to preparing this manuscript.

Code Availability

Not applicable.

Consent for Publication

Not applicable.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Funding

AK: Research funding from the Missouri Spinal Cord Injury Disease Research Program.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketabforoush, A., Faghihi, F., Azedi, F. et al. Sodium Phenylbutyrate and Tauroursodeoxycholic Acid: A Story of Hope Turned to Disappointment in Amyotrophic Lateral Sclerosis Treatment. Clin Drug Investig (2024). https://doi.org/10.1007/s40261-024-01371-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40261-024-01371-1

Navigation