Log in

Investigation of a Novel Atmospheric Pressure Microwave Cold Plasma Torch and Its Characteristics

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

This study proposes a coaxial structure atmospheric pressure microwave cold plasma device that utilizes argon as the main working gas. It achieves stable formation of atmospheric pressure cold plasma jet at low power (<50 W) with a jet length ranging from 1 mm to 32 mm. The paper analyzes the composition of the cold plasma using spectroscopy and investigates its composition changes at different positions along the jet. It also studies the appearance and reaction composition of the plasma filament under different shielding gases. Furthermore, it explores the effects of continuous and modulated microwave power on the length, appearance, and composition of the plasma filament. Finally, it examines the bactericidal effect of the plasma filament on Escherichia coli under various gas conditions, providing a foundation for further application research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fu W., Zhang C., Guan X., Li X., Yan Y., J. Microw. Power Electromagn. Energy, 2022, 56, 58.

    Google Scholar 

  2. Liao X., Liu D., **ang Q., Ahn J., Chen S., Ye X., Ding T., Food Control, 2017, 75, 83.

    Article  CAS  Google Scholar 

  3. Feizollahi E., Misra N. N., Roopesh M. S., Crit. Rev. Food Sci. Nutr., 2021, 61, 666.

    Article  CAS  PubMed  Google Scholar 

  4. Umair M., Jabbar S., Ayub Z., Muhammad Aadil R., Abid M., Zhang J., Liqing Z., Food Rev. Int., 2022, 38, 789.

    Article  CAS  Google Scholar 

  5. Yang Z., Liu D., Plasma Processes Polym., 2021, 18, 2100054.

    Article  CAS  Google Scholar 

  6. Schlegel J., Köritzer J., Boxhammer V., Clin. Plasma Med., 2013, 1, 2.

    Article  Google Scholar 

  7. Tsai M.-H., Lin C.-H., Chen W.-T., Huang C.-H., Woon W.-Y., Lin C.-T., ECS J. Solid State Sci. Technol., 2020, 9, 121007.

    Article  CAS  Google Scholar 

  8. George A., Shen B., Craven M., Wang Y., Kang D., Wu C., Tu X., Renewable Sustainable Energy Rev., 2021, 135, 109702.

    Article  CAS  Google Scholar 

  9. Zhang S., Gao Y., Sun H., Fan Z., Shao T., High Voltage, 2022, 7, 718.

    Article  Google Scholar 

  10. Stoican O. S., Polym., 2021, 13, 2132.

    Article  CAS  Google Scholar 

  11. Cornell K. A., White A., Croteau A., Carlson J., Kennedy Z., Miller D., Provost M., Goering S., Plumlee D., Browning J., IEEE Trans. Plasma Sci., 2021, 49, 1388.

    Article  CAS  Google Scholar 

  12. Sremački I., Jurov A., Modic M., Cvelbar U., Wang L., Leys C., Nikiforov A., Plasma Sources Sci. Technol., 2020, 29, 035027.

    Article  Google Scholar 

  13. Trebulová K., Krčma F., Kozáková Z., Matoušková P., Appl. Sci., 2020, 10, 5538.

    Article  Google Scholar 

  14. Benova E., Marinova P., Tafradjiiska-Hadjiolova R., Sabit Z., Bakalov D., Valchev N., Traikov L., Hikov T., Tsonev I., Bogdanov T., Appl. Sci.: Basel, 2022, 12, 969.

    Article  CAS  Google Scholar 

  15. Won I. H., Kang S. K., Sim J. Y., Lee J. K., IEEE Trans. Plasma Sci., 2014, 42, 2788.

    Article  Google Scholar 

  16. Kang S. K., Kim H. Y., Yun G. S., Lee J. K., Plasma Sources Sci. Technol., 2015, 24, 035020.

    Article  Google Scholar 

  17. Liu Z., Zhang W., Tao J., Wu L., Huang K., IEEE Trans. Plasma Sci., 2019, 47, 1749.

    Article  CAS  Google Scholar 

  18. Hong L., Chen Z., Yang J., Cheng T., Chen S., Zhou Y., Wang B., Lu X., Plasma Sci. Technol., 2022, 24, 105401.

    Article  CAS  Google Scholar 

  19. Tonmitr N., Mori T., Takami M., Yonesu A., Hayashi N., IEEE Trans. Plasma Sci., 2021, 49, 154.

    Article  CAS  Google Scholar 

  20. Hnilica J., Potocnáková L., Kudrle V., IEEE Trans. Plasma Sci., 2014, 42, 2472.

    Article  Google Scholar 

  21. Voráč J., Potočňáková L., Synek P., Hnilica J., Kudrle V., Plasma Sources Sci. Technol., 2016, 25, 025018.

    Article  Google Scholar 

  22. ** Q., Zhu C., Border M. W., Hieftje G. M., Spectrochim. Acta Part B: Atomic Spectroscopy, 1991, 46, 417.

    Article  Google Scholar 

  23. Deng S., Cheng C., Ni G., Meng Y., Chen H., Curr. Appl. Phys., 2010, 10, 1164.

    Article  Google Scholar 

  24. Moisan M., Barbeau J., Moreau S., Pelletier J., Tabrizian M., Yahia L. H., Int. J. Pharm., 2001, 226, 1.

    Article  CAS  PubMed  Google Scholar 

  25. Itarashiki T., Hayashi N., Yonesu A., Jpn. J. Appl. Phys., 2016, 55, 01AB03.

    Article  Google Scholar 

  26. Nicol M. J., Brubaker T. R., Honish B. J., Simmons A. N., Kazemi A., Geissel M. A., Whalen C. T., Siedlecki C. A., Bilén S. G., Knecht S. D., Kirimanjeswara G. S., Sci. Rep., 2020, 10, 3066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. El-Sayed W. S., Ouf S. A., Mohamed A.-A. H., Front. Microbiol., 2015, 6

  28. Zhang Q., Sun P., Feng H., Wang R., Liang Y., Zhu W., Becker K. H., Zhang J., Fang J., J. Appl. Phys., 2012, 111, 123305.

    Article  Google Scholar 

  29. Xu H., Chen C., Liu D., Wang W., **a W., Liu Z., Guo L., Kong M. G., Plasma Sci. Technol., 2019, 21, 115502.

    Article  CAS  Google Scholar 

  30. Zhao Y., Shao L., Jia L., Meng Z., Liu Y., Wang Y., Zou B., Dai R., Li X., Jia F., Food Res. Int., 2022, 160, 111720.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62073287) and the Science and Technology Program of Huzhou, China (No. 2022YZ28).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei ** or Bingwen Yu.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Bai, Y., Yu, D. et al. Investigation of a Novel Atmospheric Pressure Microwave Cold Plasma Torch and Its Characteristics. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4112-7

Keywords

Navigation