Log in

Stepwise Fabrication of Proton-conducting Covalent Organic Frameworks for Hydrogen Fuel Cell Applications

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Exploring new materials to manufacture proton-conducting membranes(PEMs) for fuel cells is highly significant. In this work, we fabricated two robust and highly crystalline porous covalent organic frameworks(COFs) via a stepwise synthesis strategy. The synthesized COF structures are integrated into high-density azo and amino groups, which allow to anchor acids for accelerating proton conduction. Moreover, the COFs exhibit good chemical stability and high hydrophilicity. These features make them potential platforms for proton conduction applications. Upon loaded with H3PO4, the COFs(H3PO4@COFs) deliver a high proton conductivity of 3.15×10−2 S/cm at 353 K under 95% relative humidity(RH). Furthermore, membrane electrode assemblies are fabricated using H3PO4@COF-26 as the solid electrolyte for a single fuel cell outputting a maximum power density of 18 mW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armaroli N., Balzani V., Angew. Chem. Int. Ed., 2007, 46, 52

    Article  CAS  Google Scholar 

  2. Zhao X., Pachfule P., Thomas A., Chem. Soc. Rev., 2021, 50, 6871

    Article  CAS  PubMed  Google Scholar 

  3. Chu S., Cui Y., Liu N., Nat. Mater., 2017, 16, 16

    Article  CAS  Google Scholar 

  4. Fang W., Huang L., Zaman S., Wang Z., Han Y., **a B., Chem. Res. Chinese Universities, 2020, 36(4), 611

    Article  CAS  Google Scholar 

  5. Zhu M., Wang J., Wu Y., Chem. Res. Chinese Universities, 2020, 36(3), 320

    Article  CAS  Google Scholar 

  6. Lubitz W., Tumas W., Chem. Rev., 2007, 107, 3900

    Article  CAS  PubMed  Google Scholar 

  7. Haszeldine R. S., Science, 2009, 325, 1647

    Article  CAS  PubMed  Google Scholar 

  8. Yang F., Xu G., Dou Y., Wang B., Zhang H., Wu H., Zhou W., Li J., Chen B., Nat. Energy, 2017, 2, 877

    Article  CAS  Google Scholar 

  9. Huang X., Long C., Han J., Zhang J., Qiu X., Tang Z., Chem. Res. Chinese Universities, 2020, 36(1), 105

    Article  CAS  Google Scholar 

  10. Li B., Huang J., Wang X., Chem. Res. Chinese Universities, 2019, 35(1), 125

    Article  CAS  Google Scholar 

  11. Jacobson M. Z., Colella W. G., Science, 2005, 308, 1901

    Article  CAS  PubMed  Google Scholar 

  12. Hickner M. A., Ghassemi H., Kim Y. S., Einsla B. R., McGrath J. E., Chem. Rev., 2004, 104, 4587

    Article  CAS  PubMed  Google Scholar 

  13. Kraytsberg A., Ein-Eli Y., Energy Fuels, 2014, 28, 7303

    Article  CAS  Google Scholar 

  14. Fang J., Guo X., Harada S., Watari T., Tanaka K., Kita H., Okamoto K., Macromolecules, 2002, 35, 9022

    Article  CAS  Google Scholar 

  15. Adamski M., Skalski T. J. G., Britton B., Peckham T. J., Metzler L., Holdcroft S., Angew. Chem. Int. Ed., 2017, 56, 9058

    Article  CAS  Google Scholar 

  16. Mader J. A., Benicewicz B. C., Macromolecules, 2010, 43, 6706

    Article  CAS  Google Scholar 

  17. Yang S., Ding X., Han B., Langmuir, 2018, 34, 7640

    Article  CAS  PubMed  Google Scholar 

  18. Tang X., Ma N. Xu H., Zhang H., Zhang Q., Cai L., Otake K., Yin P., Kitagawa S., Horike S., Gu C., Mater. Horiz., 2021, 8, 3088

    Article  CAS  PubMed  Google Scholar 

  19. Shimizu G. K., Taylor J. M., Kim S., Science, 2013, 341, 354

    Article  CAS  PubMed  Google Scholar 

  20. Sadakiyo M., Yamada T., Kitagawa H., J. Am. Chem. Soc., 2014, 136, 13166

    Article  CAS  PubMed  Google Scholar 

  21. Joarder B., Lin J., Romero Z., Shimizu G. K. H., J. Am. Chem. Soc., 2017, 139, 7176

    Article  CAS  PubMed  Google Scholar 

  22. Sadakiyo M., Yamada T., Kitagawa H., J. Am. Chem. Soc., 2009, 131, 9906

    Article  CAS  PubMed  Google Scholar 

  23. Mileo P. G. M., Adil K., Davis L., Cadiau A., Belmabkhout Y., Aggarwal H., Maurin G., Eddaoudi M., Devautour-Vinot S., J. Am. Chem. Soc., 2018, 140, 13156

    Article  CAS  PubMed  Google Scholar 

  24. Trigg E. B., Gaines T. W., Maréchal M., Moed D. E., Rannou P., Wagener K. B., Stevens M. J., Winey K. I., Nat. Meter., 2018, 17, 725

    Article  CAS  Google Scholar 

  25. Meng X., Wang H., Song S., Zhang H., Chem. Soc. Rev., 2017, 46, 464

    Article  CAS  PubMed  Google Scholar 

  26. Dybtsev D. N., Ponomareva V. G., Aliev S. B., Chupakhin A. P., Gallyamov M. R., Moroz N. K., Kolesov B. A., Kovalenko K. A., Shutova E. S., Fedin V. P., ACS Appl. Mater. Interfaces, 2014, 6, 5161

    Article  CAS  PubMed  Google Scholar 

  27. Hurd J. A., Vaidhyanathan R., Thangadurai V., Ratcliffe C. I., Moudrakovski I. L., Shimizu G. K., Nat. Chem., 2009, 1, 705

    Article  CAS  PubMed  Google Scholar 

  28. Diercks C. S., Yaghi O. M., Science, 2017, 355, 923

    Article  CAS  Google Scholar 

  29. Huang N., Wang P., Jiang D., Nat. Rev. Mater., 2016, 1, 16068

    Article  CAS  Google Scholar 

  30. Liu X., Li J., Gui B., Lin G., Fu Q., Yin S., Liu X., Sun J., Wang C., J. Am. Chem. Soc., 2021, 143, 2123

    Article  CAS  PubMed  Google Scholar 

  31. Su Y., Wan Y., Xu H., Otake K., Tang X., Huang L., Kitagawa S., Gu C., J. Am. Chem. Soc., 2020, 142, 13316

    Article  CAS  PubMed  Google Scholar 

  32. Das S., Heasman P., Ben T., Qiu S., Chem. Rev., 2017, 117, 1515

    Article  CAS  PubMed  Google Scholar 

  33. Guan X., Li H., Ma Y., Xue M., Fang Q., Yan Y., Valtchev V., Qiu S., Nat. Chem., 2019, 11, 587

    Article  CAS  PubMed  Google Scholar 

  34. Dey K., Pal M., Rout K., Kunjattu H. S., Das A., Mukherjee R., Kharul U. K., Banerjee R., J. Am. Chem. Soc., 2017, 139, 13083

    Article  CAS  PubMed  Google Scholar 

  35. Liang R., A R., Xu S., Qi Q., Zhao X., J. Am. Chem. Soc., 2020, 142, 70

    Article  CAS  PubMed  Google Scholar 

  36. Wang J. C., Kan X., Shang J. Y., Qiao H., Dong Y. B., J. Am. Chem. Soc., 2020, 142, 16915

    Article  CAS  PubMed  Google Scholar 

  37. Shao P., Li J., Chen F., Ma L., Li Q., Zhang M., Zhou J., Yin A., Feng X., Wang B., Angew. Chem. Int. Ed., 2018, 57, 16501

    Article  CAS  Google Scholar 

  38. Wang Y., Liu Y., Li H., Guan X., Xue M., Yan Y., Valtchev V., Qiu S., Fang Q., J. Am. Chem. Soc., 2020, 142, 3736

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z., Yu Q., Huang Y., An H., Zhao Y., Feng Y., Li X., Shi X., Liang J., Pan F., Cheng P., Chen Y., Ma S., Zhang Z., ACS Cent. Sci., 2019, 5, 1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao X., Chen Y., Wang Z., Zhang Z., Polymer. Chem., 2021, 12, 4874

    Article  CAS  Google Scholar 

  41. Lu C., Mo Y., Hong Y., Chen T., Yang Z., Wan L., Wang D., J. Am. Chem. Soc., 2020, 142, 14350

    Article  CAS  PubMed  Google Scholar 

  42. Wu X., Hong Y., Xu B., Nishiyama Y., Jiang W., Zhu J., Zhang G., Kitagawa S., Horike S., J. Am. Chem. Soc., 2020, 142, 14357

    Article  CAS  PubMed  Google Scholar 

  43. Guo C., Liu M., Gao G., Tian X., Zhou J., Dong L., Li Q., Chen Y., Li S., Lan Y., Angew. Chem. Int. Ed., 2021, 60, 2

    Article  CAS  Google Scholar 

  44. Duan H., Li K., **e M., Chen J., Zhou H., Wu X., Ning G., Cooper A. I., Li D., J. Am. Chem. Soc., 2021, 143, 19446

    Article  CAS  PubMed  Google Scholar 

  45. Bi S., Zhang Z., Meng F., Wu D., Chen J., Zhang F., Angew. Chem. Int. Ed., 2021, DOI: https://doi.org/10.1002/anie.202111627

  46. Yang Y., Zhang P., Hao L., Cheng P., Chen Y., Zhang Z., Angew. Chem. Int. Ed., 2021, 60, 21838

    Article  CAS  Google Scholar 

  47. Liu L., Yin L., Cheng D., Zhao S., Zang H., Zhang N., Zhu G., Angew. Chem. Int. Ed., 2021, 60, 14875

    Article  CAS  Google Scholar 

  48. Yang Y., He X., Zhang P., Andaloussi Y. H., Zhang H., Jiang Z., Chen Y., Ma S., Cheng P., Zhang Z., Angew. Chem. Int. Ed., 2020, 59, 3678

    Article  CAS  Google Scholar 

  49. Peng Y., Xu G., Hu Z., Cheng Y., Chi C., Yuan D., Cheng H., Zhao D., ACS Appl. Mater. Interfaces, 2016, 8, 18505

    Article  CAS  PubMed  Google Scholar 

  50. Ranjeesh K., Illathvalappil R., Veer S., Peter J., Wakchaure V., Goudappagouda, Raj V., Kurungot S., Babu S. S., J. Am. Chem. Soc., 2019, 141, 14950

    Article  CAS  PubMed  Google Scholar 

  51. Chandra S., Kundu T., Kandambeth S., BabaRao R., Marathe Y., Kunjir S. M., Banerjee R., J. Am. Chem. Soc., 2014, 136, 6570

    Article  CAS  PubMed  Google Scholar 

  52. Ma H., Liu B., Li B., Zhang L., Li Y., Tan H., Zang H., Zhu G., J. Am. Chem. Soc., 2016, 138, 5897

    Article  CAS  PubMed  Google Scholar 

  53. Montoro C., Rodríguez-San-Miguel D., Polo E., Escudero-Cid R., Ruiz-Gonzalez M., Navarro J. A. R., Ocon P., Zamora F., J. Am. Chem. Soc., 2017, 139, 10079

    Article  CAS  PubMed  Google Scholar 

  54. Xu H., Tao S., Jiang D., Nat. Mater., 2016, 15, 722

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.21971126), the 111 Projects of China(No.B12015) and the Frontiers Science Center for New Organic Matter, China(No.63181206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Zhao, Yi Yang or Zhenjie Zhang.

Ethics declarations

The authors declare no conflicts of interest.

Supporting information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Zhao, P., Liu, Q. et al. Stepwise Fabrication of Proton-conducting Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Chem. Res. Chin. Univ. 38, 461–467 (2022). https://doi.org/10.1007/s40242-022-1514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-1514-2

Keywords

Navigation