Log in

Boron-doped Covalent Triazine Framework for Efficient CO2 Electroreduction

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Converting CO2 into chemicals with electricity generated by renewable energy is a promising way to achieve the goal of carbon neutrality. Carbon-based materials have the advantages of low cost, wide sources and environmental friendliness. In this work, we prepared a series of boron-doped covalent triazine frameworks and found that boron do** can significantly improve the CO selectivity up to 91.2% in the CO2 electroreduction reactions(CO2RR). The effect of different do** ratios on the activity by adjusting the proportion of doped atoms was systematically investigated. This work proves that the do** modification of non-metallic materials is a very effective way to improve their activity, and also lays a foundation for the study of other element do** in the coming future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hepburn C., Adlen E., Beddington J., Carter E. A., Fuss S., MacDowell N., Minx J. C., Smith P., Williams C. K., Nature, 2019, 575(7781), 87

    Article  CAS  PubMed  Google Scholar 

  2. Aresta M., Dibenedetto A., Angelini A., Chem. Rev., 2014, 114(3), 1709

    Article  CAS  PubMed  Google Scholar 

  3. Goeppert A., Czaun M., Jones J. P., Surya Prakash G. K., Olah G. A., Chem. Soc. Rev., 2014, 43(23), 7995

    Article  CAS  PubMed  Google Scholar 

  4. Bushuyev O. S., De Luna P., Dinh C. T., Tao L., Saur G., van de Lagemaat J., Kelley S. O., Sargent E. H., Joule, 2018, 2(5), 825

    Article  CAS  Google Scholar 

  5. Shah S. S. A., Najam T., Wen M., Zang S.-Q., Waseem A., Jiang H. L., Small Struct., 2021, 2100090

  6. Liang J., Wu Q., Huang Y. B., Cao R., EnergyChem, 2021, DOI: https://doi.org/10.1016/j.enchem.2021.100064

  7. Leow W. R., Lum Y., Ozden A., Wang Y., Nam D. H., Chen B., Wicks J., Zhuang T. T., Li F., Sinton D., Sargent E. H., Science, 2020, 368(6496), 1228

    Article  CAS  PubMed  Google Scholar 

  8. Hou Y., Huang Y. B., Liang Y. L., Chai G. L., Yi J. D., Zhang T., Zang K. T., Luo J., Xu R., Lin H., Zhang S. Y., Wang H. M., Cao R., CCS Chem., 2019, 1(4), 384

    Article  CAS  Google Scholar 

  9. Yi J. D., **e R., **e Z. L., Chai G. L., Liu T. F., Chen R. P., Huang Y. B., Cao R., Angew. Chem. Int. Ed., 2020, 59(52), 23641

    Article  CAS  Google Scholar 

  10. Hou Y., Liang Y. L., Shi P. C., Huang Y. B., Cao R., Appl. Catal. B Environ., 2020, 271, 118929

    Article  CAS  Google Scholar 

  11. Zhang M. D., Si D. H., Yi J. D., Zhao S. S., Huang Y. B., Cao R., Small, 2020, 16(52), 2005254

    Article  CAS  Google Scholar 

  12. Jiao L., Yang W., Wan G., Zhang R., Zheng X., Zhou H., Yu S. H., Jiang H. L., Angew. Chem. Int. Ed., 2020, 59(46), 20589

    Article  CAS  Google Scholar 

  13. Zhu H. J., Lu M., Wang Y. R., Yao S. J., Zhang M., Kan Y. H., Liu J., Chen Y., Li S. L., Lan Y. Q., Nat. Commun., 2020, 11(1), 497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu Q., **e R. K., Mao M. J., Chai G. L., Yi J. D., Zhao S. S., Huang Y. B., Cao R., ACS Energy Lett., 2020, 5, 1005

    Article  CAS  Google Scholar 

  15. Yi J. D., Si D. H., **e R., Yin Q., Zhang M. D., Wu Q., Chai G. L., Huang Y. B., Cao R., Angew. Chem. Int. Ed., 2021, 60(31), 17108

    Article  CAS  Google Scholar 

  16. Wu Q., Liang J., **e Z. L., Huang Y. B., Cao R., ACS Mater. Lett., 2021, 3(5), 454

    Article  CAS  Google Scholar 

  17. Wu Q., Mao M. J., Wu Q. J., Liang J., Huang Y. B., Cao R., Small, 2021, 17(22), 2004933

    Article  CAS  Google Scholar 

  18. Zhang M. D., Si D. H., Yi J. D., Yin Q., Huang Y. B., Cao R., Sci. China Chem., 2021, 64(8), 1332

    Article  CAS  Google Scholar 

  19. Gong Y. N., Jiao L., Qian Y., Pan C. Y., Zheng L., Cai X., Liu B., Yu S. H., Jiang H. L., Angew. Chem. Int. Ed., 2020, 59(7), 2705

    Article  CAS  Google Scholar 

  20. Zhang Y., Jiao L., Yang W., **e C., Jiang H. L., Angew. Chem. Int. Ed., 2021, 60(14), 7607

    Article  CAS  Google Scholar 

  21. Zhang L., Li X. X., Lang Z. L., Liu Y., Liu J., Yuan L., Lu W. Y., **a Y. S., Dong L. Z., Yuan D. Q., Lan Y. Q., J. Am. Chem. Soc., 2021, 143(10), 3808

    Article  CAS  PubMed  Google Scholar 

  22. Wang R., Liu J., Huang Q., Dong L. Z., Li S. L., Lan Y. Q., Angew. Chem. Int. Ed., 2021, 60(36), 19829

    Article  CAS  Google Scholar 

  23. Li Y., Zhou W., Wang H., **e L., Liang Y., Wei F., Idrobo J. C., Pennycook S. J., Dai H., Nat. Nanotechnol., 2012, 7(6), 394

    Article  CAS  PubMed  Google Scholar 

  24. Liu B., Shioyama H., Akita T., Xu Q., J. Am. Chem. Soc., 2008, 130(16), 5390

    Article  CAS  PubMed  Google Scholar 

  25. Meng J., Niu C., Xu L., Li J., Liu X., Wang X., Wu Y., Xu X., Chen W., Li Q., Zhu Z., Zhao D., Mai L., J. Am. Chem. Soc., 2017, 139(24), 8212

    Article  CAS  PubMed  Google Scholar 

  26. Qu L., Liu Y., Baek J. B., Dai L., ACS Nano, 2010, 4(3), 1321

    Article  CAS  PubMed  Google Scholar 

  27. Huang H., Liang C., Sha H., Yu Y., Lou Y., Chen C., Li C., Chen X., Shi Z., Feng S., Chem. Res. Chinese Universities, 2019, 35(2), 171

    Article  CAS  Google Scholar 

  28. Yi J. D., Xu R., Wu Q., Zhang T., Zang K. T., Luo J., Liang Y. L., Huang Y. B., Cao R., ACS Energy Lett., 2018, 3(4), 883

    Article  CAS  Google Scholar 

  29. Wang Y., Tao L., Chen R., Li H., Su H., Zhang N., Liu Q., Wang S., Chem. Res. Chinese Universities, 2020, 36(3), 453

    Article  CAS  Google Scholar 

  30. He C., Liang J., Zou Y.-H., Yi J.-D., Huang Y.-B., Cao R., Natl. Sci. Rev., 2021, DOI https://doi.org/10.1093/nsr/nwab157

  31. Zou Y. H., Huang Y. B., Si D. H., Yin Q., Wu Q. J., Weng Z., Cao R., Angew. Chem. Int. Ed., 2021, 60(38), 20915

    Article  CAS  Google Scholar 

  32. Yi J. D., Xu R., Chai G. L., Zhang T., Zang K., Nan B., Lin H., Liang Y. L., Lv J., Luo J., Si R., Huang Y. B., Cao R., J. Mater. Chem. A, 2019, 7(3), 1252

    Article  CAS  Google Scholar 

  33. Yan B., Liu D., Feng X., Shao M., Zhang Y., Chem. Res. Chinese Universities, 2020, 36(3), 425

    Article  CAS  Google Scholar 

  34. Sun X., Kang X., Zhu Q., Ma J., Yang G., Liu Z., Han B., Chem. Sci., 2016, 7(4), 2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song Y., Chen W., Zhao C., Li S., Wei W., Sun Y., Angew. Chem. Int. Ed., 2017, 56(36), 10840

    Article  CAS  Google Scholar 

  36. Liu T., Ali S., Lian Z., Si C., Su D. S., Li B., J. Mater. Chem. A, 2018, 6(41), 19998

    Article  CAS  Google Scholar 

  37. Chen C., Sun X., Yan X., Wu Y., Liu H., Zhu Q., Bediako B. B. A., Han B., Angew. Chem. Int. Ed., 2020, 59(27), 11123

    Article  CAS  Google Scholar 

  38. Zhang M. Di, Yi J. D., Huang Y. B., Cao R., Chinese J. Struct. Chem., 2021, 40(9), 1213

    CAS  Google Scholar 

  39. Ma W., **e S., Liu T., Fan Q., Ye J., Sun F., Jiang Z., Zhang Q., Cheng J., Wang Y., Nat. Catal., 2020, 3(6), 478

    Article  CAS  Google Scholar 

  40. Zhou Y., Che F., Liu M., Zou C., Liang Z., De Luna P., Yuan H., Li J., Wang Z., **e H., Li H., Chen P., Bladt E., Quintero-Bermudez R., Sham T. K., Bals S., Hofkens J., Sinton D., Chen G., Sargent E. H., Nat. Chem., 2018, 10(9), 974

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y. Z., Wang C., Wu Z. Y., **ong Y., Xu Q., Yu S. H., Jiang H. L., Adv. Mater., 2015, 27(34), 5010

    Article  CAS  PubMed  Google Scholar 

  42. Wang M., Yang W., Li X., Xu Y., Zheng L., Su C., Liu B., ACS Energy Lett., 2021, 6(2), 379

    Article  CAS  Google Scholar 

  43. Kuhn P., Antonietti M., Thomas A., Angew. Chem. Int. Ed., 2008, 47(18), 3450

    Article  CAS  Google Scholar 

  44. Aijaz A., Akita T., Yang H., Xu Q., Chem. Commun., 2014, 50(49), 6498

    Article  CAS  Google Scholar 

  45. Huang Y. B., Pachfule P., Sun J. K., Xu Q., J. Mater. Chem. A, 2016, 4(11), 4273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China(Nos.2018YFA0208600, 2018YFA0704502), the National Natural Science Foundation of China(Nos.21871263, 22071245, 22033008), the Fund of the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZZ103), and the Project of the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No. Y201850).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanbiao Huang or Rong Cao.

Ethics declarations

The authors declare no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, J., Li, Q., Chi, S. et al. Boron-doped Covalent Triazine Framework for Efficient CO2 Electroreduction. Chem. Res. Chin. Univ. 38, 141–146 (2022). https://doi.org/10.1007/s40242-021-1384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1384-z

Keywords

Navigation