Log in

Development of conserved multi-epitopes based hybrid vaccine against SARS-CoV-2 variants: an immunoinformatic approach

  • Original Research
  • Published:
In Silico Pharmacology Aims and scope Submit manuscript

Abstract

The world has faced unprecedented disruptions like global quarantine and the COVID-19 pandemic due to SARS-CoV-2. To combat these unsettling situations, several effective vaccines have been developed and are currently being used. However, the emergence of new variants due to the high mutation rate of SARS-CoV-2 challenges the efficacy of existing vaccines and has highlighted the need for novel vaccines that will be effective against various SARS-CoV-2 variants. In this study, we exploited the four structural proteins of SARS-CoV-2 to execute a potential multi-epitope vaccine against SARS-CoV-2 and its variants. The vaccine was designed by utilizing the antigenic, non-toxic, and non-allergenic B-cell and T-cell epitopes, which were selected from conserved regions of viral proteins. To build a vaccine construct, epitopes were connected through different linkers and an adjuvant was also attached at the start of the construct to enhance the immunogenicity and specificity of the epitopes. The vaccine construct was then screened through the aforementioned filters and it scored 0.6019 against the threshold of 0.4 on VexiJen 2.0 which validates its antigenicity. Toll-like receptors (i.e., TLR2, TLR3, TLR4, TLR5, and TLR8) and vaccine construct were docked by Cluspro 2.0, and TLR8 showed strong interaction with construct having a maximum negative binding energy of − 1577.1 kCal/mole. C-IMMSIM's immune simulations over three doses of the vaccine and iMODS' molecular dynamic simulations were executed to assess the reliability of the docked complexes. The stability of the vaccine construct was evaluated through the physicochemical analyses and the findings suggested that the manufactured vaccine is stable under a wide range of circumstances and can trigger immune responses against various SARS-CoV-2 variants (due to conserved epitopes). However, to strengthen the formulation of the vaccine and assess its safety and effectiveness, additional investigations and studies are required to support the computational data of this research at in-vitro and in-vivo levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

More data related to this study can be accessed by sending a rea-sonable email to 123allah.rakha@gmail.com.

References

  • Abebe EC, Dejenie TA, Shiferaw MY, T.J.V.j. Malik. (2020) The newly emerged COVID-19 disease: a systemic review. Virol J 17:1–8

    Article  Google Scholar 

  • Abraham Peele K, Srihansa T, Krupanidhi S, Ayyagari VS, Venkateswarulu TJJOBS, Dynamics. (2021) Design of multi-epitope vaccine candidate against SARS-CoV-2: a in-silico study. J Biomole Struc Dynam 39:3793–3801

    Article  CAS  Google Scholar 

  • Adam KM (2021) Immunoinformatics approach for multi-epitope vaccine design against structural proteins and ORF1a polyprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Trop Dis Travel Med Vacc 7:22

    Article  Google Scholar 

  • Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, Gottardo R, Bica MA, Garofano A, Koch SD, Fotin-Mleczek M, Hoerr I, Clemens R, von Sonnenburg F (2017) Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390:1511–1520

    Article  CAS  PubMed  Google Scholar 

  • Arya H, Bhatt TK (2021) Chapter 20 - role of bioinformatics in subunit vaccine design. In: Coumar MS (ed) Molecular docking for computer-aided drug design. Academic Press, UK, pp 425–439

    Chapter  Google Scholar 

  • Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, McGettigan J, Khetan S, Segall N, Solis J, Brosz A, Fierro C, Schwartz H, Neuzil K, Corey L, Gilbert P, Janes H, Follmann D, Marovich M, Mascola J, Polakowski L, Ledgerwood J, Graham BS, Bennett H, Pajon R, Knightly C, Leav B, Deng W, Zhou H, Han S, Ivarsson M, Miller J, Zaks T (2021) Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 384:403–416

    Article  CAS  PubMed  Google Scholar 

  • Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, Laska ME, Smith M, Almarsson Ö, Thompson J, Ribeiro A, Watson M, Zaks T, Ciaramella G (2017) Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther 25:1316–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashir Z, Ahmad SU, Kiani BH, Jan Z, Khan N, Khan U, Haq I, Zahir F, Qadus A, Mahmood T (2021) Immunoinformatics approaches to explore B and T cell epitope-based vaccine designing for SARS-CoV-2 Virus. Pak J Pharm Sci 34:345–352

    CAS  PubMed  Google Scholar 

  • Bellino S, Bella A, Puzelli S, Di Martino A, Facchini M, Punzo O, Pezzotti P, Castrucci MR, The InfluNet Study (2019) Moderate influenza vaccine effectiveness against A(H1N1) pdm09 virus, and low effectiveness against A(H3N2) subtype, 2018/19 season in Italy. Expert Rev Vaccines 18:1201–1209

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, Lee SS, Chakraborty C (2020) Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J Med Virol 92:618–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian L, Gao Q, Gao F, Wang Q, He Q, Wu X, Mao Q, Xu M, Liang Z (2021) Impact of the delta variant on vaccine efficacy and response strategies. Expert Rev Vaccines 20:1201–1209

    Article  CAS  PubMed  Google Scholar 

  • Boopathi S, Poma AB, P.J.J.o.B.S. Kolandaivel, and Dynamics. (2021) Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomole Struc Dynm 39:3409–3418

    CAS  Google Scholar 

  • Broere F, van Eden W (2019) T cell subsets and T cell-mediated immunity. In: Parnham MJ, Nijkamp FP, Rossi AG (eds) Nijkamp and Parnham’s principles of immunopharmacology. Springer International Publishing, Cham, pp 23–35

    Chapter  Google Scholar 

  • Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A (2006) Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Cancro MP, Tomayko MM (2021) Memory B cells and plasma cells: the differentiative continuum of humoral immunity. Immunol Rev 303:72–822

    Article  CAS  PubMed  Google Scholar 

  • Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, **ng F, Liu J, Yip CC, Poon RW, Tsoi HW, Lo SK, Chan KH, Poon VK, Chan WM, Ip JD, Cai JP, Cheng VC, Chen H, Hui CK, Yuen KY (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet (london, England) 395:514–523

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee R, Mahapatra SR, Dey J, Raj Takur K, Raina V, Misra N, Suar M (2023) An immunoinformatics and structural vaccinology study to design a multi-epitope vaccine against Staphylococcus aureus infection. J Molecular Recognit 36:e3007

    Article  CAS  Google Scholar 

  • Coudert E, Gehant S, de Castro E, Pozzato M, Baratin D, Neto T, Sigrist CJA, Redaschi N, Bridge A, T.U. Consortium (2022) Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 39:b793

    Article  Google Scholar 

  • Craig DB, Dombkowski AA (2013) Disulfide by design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinf 14:346

    Article  Google Scholar 

  • Devi A, Chaitanya NSJJOBS, Dynamics. (2021) In silico designing of multi-epitope vaccine construct against human coronavirus infections. J Biomole Struct Dyn 39:6903–6917

    Article  CAS  Google Scholar 

  • Dey J, Mahapatra SR, Singh PK, Prabhuswamimath SC, Misra N, Suar M (2023) Designing of multi-epitope peptide vaccine against Acinetobacter baumannii through combined immunoinformatics and protein interaction-based approaches. Immunol Res. https://doi.org/10.1007/s12026-023-09374-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimitrov I, Flower DR, Doytchinova I (2013) AllerTOP—a server for in silico prediction of allergens. BMC Bioinform 14:S4

    Article  Google Scholar 

  • Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F (2020) A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 5:237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8:4

    Article  Google Scholar 

  • Drummond E, Kavanagh T, Pires G, Marta-Ariza M, Kanshin E, Nayak S, Faustin A, Berdah V, Ueberheide B, Wisniewski T (2022) The amyloid plaque proteome in early onset Alzheimer’s disease and down syndrome. Acta Neuropathol Commun 10:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta SK, Langenburg T (2023) A perspective on current flavivirus vaccine development: a brief review. Viruses. https://doi.org/10.3390/v15040860

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezzemani W, Kettani A, Sappati S, Kondaka K, El Ossmani H, Tsukiyama-Kohara K, Altawalah H, Saile R, Kohara M, Benjelloun SJJOBS (2022) Reverse vaccinology-based prediction of a multi-epitope SARS-CoV-2 vaccine and its tailoring to new coronavirus variants. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2022.2075468

    Article  PubMed  Google Scholar 

  • Ferris LK, Mburu YK, Mathers AR, Fluharty ER, Larregina AT, Ferris RL, Falo LD Jr (2013) Human beta-defensin 3 induces maturation of human langerhans cell-like dendritic cells: an antimicrobial peptide that functions as an endogenous adjuvant. J Invest Dermatol 133:460–468

    Article  CAS  PubMed  Google Scholar 

  • Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, Tamir H, Achdout H, Stein D, Israeli O, Beth-Din A, Melamed S, Weiss S, Israely T, Paran N, Schwartz M, Stern-Ginossar N (2021) The coding capacity of SARS-CoV-2. Nature 589:125–130

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, S.e. Duvaud, M.R. Wilkins, R.D. Appel, and A. Bairoch. (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ, pp 571–607

    Chapter  Google Scholar 

  • Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comp Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  • Gokhale RS, Khosla CJCOICB (2000) Role of linkers in communication between protein modules. Curr Opin Chem Biol 4:22–27

    Article  CAS  PubMed  Google Scholar 

  • Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526-531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Peacock SJ, Robertson DL, C.-G.U. Consortium (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19:409–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo L, Park H, Seok C (2013) GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 41:W384-388

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosseini R, Askari N (2023) A review of neurological side effects of COVID-19 vaccination. Eur J Med Res 28:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Hui DS, Madani IAETA, Ntoumi F, Kock R, Dar O, Ippolito G, McHugh TD, Memish ZA, Drosten C, Zumla A, Petersen E (2020) The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan China. Int J Infect Dis 91:264–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, Sette A, Peters B, Nielsen M (2018) Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 154:394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45:W24-w29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorge S, Dellagostin OA (2017) The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnol Res Innovat 1:6–13

    Article  Google Scholar 

  • Kar T, Narsaria U, Basak S, Deb D, Castiglione F, Mueller DM, Srivastava AP (2020) A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep 10:10895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur A, Baldwin J, Brar D, Salunke DB, Petrovsky N (2022) Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr Opin Chem Biol 70:102172

    Article  CAS  PubMed  Google Scholar 

  • Kim SC, Sekhon SS, Shin W-R, Ahn G, Cho B-K, Ahn J-Y, Kim Y-H (2022) Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol Cell Toxicol 18:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kirar M, Singh H, Sehrawat N (2022) Virtual screening and molecular dynamics simulation study of plant protease inhibitors against SARS-CoV-2 envelope protein. Inf Med Unlocked 30:100909

    Article  Google Scholar 

  • Kotey E, Lukosaityte D, Quaye O, Ampofo W, Awandare G, Iqbal M (2019) Current and novel approaches in influenza management. Vaccines 7:2–53

    Article  Google Scholar 

  • Kozakov D, Hall DR, **a B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Qureshi R, Sagurthi SR, Qureshi IA (2021) Designing of nucleocapsid protein based novel multi-epitope vaccine against SARS-COV-2 using immunoinformatics approach. Int J Pept Res Ther 27:941–956

    Article  CAS  PubMed  Google Scholar 

  • López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P (2014) iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 42:W271-276

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin DP, Weaver S, Tegally H, San EJ, Shank SD, Wilkinson E, Lucaci AG, Giandhari J, Naidoo S, Pillay Y, Singh L, Lessells RJ, Gupta RK, Wertheim JO, Nekturenko A, Murrell B, Harkins GW, Lemey P, MacLean OA, Robertson DL, de Oliveira T, Kosakovsky Pond SL (2021) The emergence and ongoing convergent evolution of the N501Y lineages coincides with a major global shift in the SARS-CoV-2 selective landscape. medRxiv 1:33

    Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  • Moss P (2022) The T cell immune response against SARS-CoV-2. Nat Immunol 23:186–193

    Article  CAS  PubMed  Google Scholar 

  • Naveed M, Yaseen AR, Khalid H, Ali U, Rabaan AA, Garout M, Halwani MA, Al Mutair A, Alhumaid S, Al Alawi Z, Alhashem YN, Ahmed N, Yean CY (2022) Execution and design of an Anti HPIV-1 vaccine with multiple epitopes triggering innate and adaptive immune responses: an immunoinformatic approach. Vaccines 10:869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen LH, Drew DA, Graham MS, Joshi AD, Guo C-G, Ma W, Mehta RS, Warner ET, Sikavi DR, Lo C-HJTLPH (2020) Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. Lancet Public Health 5:e475483

    Article  Google Scholar 

  • Oliveira SC, de Magalhães MTQ, Homan EJ (2020) Immunoinformatic Analysis of SARS-CoV-2 Nucleocapsid Protein and Identification of COVID-19 Vaccine Targets. Front Immunol. https://doi.org/10.3389/fimmu.2020.587615

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvizpour S, Pourseif MM, Razmara J, Rafi MA, Omidi Y (2020) Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches. Drug Discovery Today 25:1034–1042

    Article  CAS  PubMed  Google Scholar 

  • Petersen E, Ntoumi F, Hui DS, Abubakar A, Kramer LD, Obiero C, Tambyah PA, Blumberg L, Yapi R, Al-Abri SJIJOID (2022) Emergence of new SARS-CoV-2 variant of concern omicron (B 11 529)-highlights Africa’s research capabilities, but exposes major knowledge gaps, inequities of vaccine distribution, inadequacies in global COVID-19 response and control efforts. J Inf Dis 114:268–272

    CAS  Google Scholar 

  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, Bailey R, Swanson KA, Roychoudhury S, Koury K, Li P, Kalina WV, Cooper D, Frenck RW Jr, Hammitt LL, Türeci Ö, Nell H, Schaefer A, Ünal S, Tresnan DB, Mather S, Dormitzer PR, Şahin U, Jansen KU, Gruber WC (2020) Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med 383:2603–2615

    Article  CAS  PubMed  Google Scholar 

  • Rapin N, Lund O, Bernaschi M, Castiglione F (2010) Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE 5:e9862

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M (2020) NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res 48:W449-w454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, Julander JG, Tang WW, Shresta S, Pierson TC, Ciaramella G, Diamond MS (2017) Modified mRNA vaccines protect against Zika virus infection. Cell 168:1114-1125.e1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satarker S, Nampoothiri M (2020) Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch Med Res 51:482–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma N, Naorem LD, Jain S, Raghava GPS (2022) ToxinPred2: an improved method for predicting toxicity of proteins. Brief Bioinform. https://doi.org/10.1093/bib/bbac174

    Article  PubMed  PubMed Central  Google Scholar 

  • Treanor J (2004) Influenza vaccine–outmaneuvering antigenic shift and drift. N Engl J Med 350:218–220

    Article  CAS  PubMed  Google Scholar 

  • Vankadari N, Wilce JAJEM (2020) Emerging COVID-19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microb Infect 9:601–604

    Article  CAS  Google Scholar 

  • Wang C, Horby PW, Hayden FG, Gao GF (2020) A novel coronavirus outbreak of global health concern. Lancet (london, England) 395:470–473

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Chen J, Wei G-W (2021) Mechanisms of SARS-CoV-2 evolution revealing vaccine-resistant mutations in Europe and America. The Journal of Physical Chemistry Letters 12:11850–11857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407-410

    Article  PubMed  PubMed Central  Google Scholar 

  • Wlodawer A (2017) Stereochemistry and validation of macromolecular structures. Methods Mol Biol 1607:595–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.R.Y.; methodology, A.R.Y., and M.S.; software, A.R.Y., D.M.K., and M.S.; validation, A.R.Y., and M.S.; formal analysis, A.R.Y., A.S.Q., and I.A.; investigation, A.R.Y., and M.S.; resources, A.R.Y., and M.S.; data curation, A.R.Y., A.A., and M.S.; writing—original draft preparation, A.R.Y., and M.S.; writing—review and editing A.R.Y., M.S., A.S.Q., A.A., I.A., and D.M.K. supervision, A.R.Y., and M.S., project administration, A.R.Y.; prepared figures 1-12, A.S.Q., A.A., I.A., and D.M.K. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Allah Rakha Yaseen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40203_2023_156_MOESM1_ESM.rar

Supplementary file1 Figure S1a: Conservancy analysis of Spike protein for the filtration of epitopes; Figure S2b: Conservancy analysis of Envelope protein for the filtration of epitopes; Figure S1c: Conservancy analysis of Membrane protein for the filtration of epitopes; Figure S1d: Conservancy analysis of Nucleocapsid protein for the filtration of epitopes; Figure S2: The wireframe model of original and mutant model after the disulfide engineering: The yellow colored rods represents the disulfide bond formation after disulfide engineering; Figure S3a: Graphical representation of various Normal mode Analyses (NMA) generated by iMODS for the docked complex (Vaccine + TLR2); Figure S3b: Graphical representation of various Normal mode Analyses (NMA) generated by iMODS for the docked complex (Vaccine + TLR3); Figure S3c: Graphical representation of various Normal mode Analyses (NMA) generated by iMODS for the docked complex (Vaccine + TLR4); Figure S3d: Graphical representation of various Normal mode Analyses (NMA) generated by iMODS for the docked complex (Vaccine + TLR5); Figure S4: Immune simulation analysis: a) Represents the production of Dendritic cells per state (mm-3) while b) showed the generation of MA population per state (mm-3); Figure S5: Immune simulation analysis: a) Represents the production of EP population per state (mm-3) while b) showed the generation of NK cell population per state (mm-3); Table S1a: List of B-cell restricted epitopes predicted for Spike (S) protein; Table S1b: The list of B-cell-specific epitopes predicted from Envelope (E) protein; Table S1c: List of all the B-cell restricted protein predicted from Membrane (M) protein; Table S1d: The list of linear B-cell restricted epitope predicted from Nucleocapsid (N); Table S2a: List of reference HLA alleles used for the prediction of MHC-I restricted epitopes; Table S2b: The selected HLA alleles as reference for the prediction of MHC-II restricted epitopes; Table S3a: The set alleles for individual MHC-I epitopes used in Population Coverage Analysis; Table S3b: The set alleles for individual MHC-II epitopes used in Population Coverage Analysis; Table S4a: Cumulative population coverage against individual MHC-I restricted epitopes and HLA hits; Table S4b: Percentage genotype frequencies of each HLA allele against individual MHC-I restricted epitopes; Table S4c: Cumulative population coverage against individual MHC-II restricted epitopes and HLA hits; Table S4d: Percentage genotype frequencies of each HLA allele against individual MHC-II restricted epitopes; Table S5: C-score for the designed 3D model by I-TASSAR; Table S6: List of predicted (black) and selected (Green) pairs for Disulfide engineering; Table S7: List of cluster members and lowest energies obtained from Cluspro docking analysis against various TLRs and vaccine construct; Table S8: The eigenvalue of various docked complexes that were obtained from ClusPro analysis. File named Tools and access dates contained the links and access dates of all the software, servers, and tools used in this study (RAR 19896 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaseen, A.R., Suleman, M., Qadri, A.S. et al. Development of conserved multi-epitopes based hybrid vaccine against SARS-CoV-2 variants: an immunoinformatic approach. In Silico Pharmacol. 11, 18 (2023). https://doi.org/10.1007/s40203-023-00156-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40203-023-00156-2

Keywords

Navigation