Log in

The current and advanced therapeutic modalities for wound healing management

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Ever-increasing demands on improving efficiencies of wound healing procedures are a strong driving force for the development of replacement approaches. This review focuses on wound healing management from the point of formation to the point of healing procedures. The most important usual healing modality with key characteristic is explained and their limitations are discussed. Novel interesting approaches are presented with a concentration of the unique features and action mechanisms. Special attention is paid to gas plasma and nanotechnology impact on wound healing management from fundamental processes to beneficial outcomes. Challenges and opportunities for the future trend that combined common protocols and emerging technologies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wild T, Rahbarnia A, Kellner M, Sobotka L, Eberlein T. Basics in nutrition and wound healing. Nutrition. 2010;26(9):862–6. https://doi.org/10.1016/j.nut.2010.05.008.

    Article  PubMed  Google Scholar 

  2. Schreml S, Szeimies RM, Prantl L, Landthaler M, Babilas P. Wound healing in the 21st century. J Am Acad Dermatol. 2010;63(5):866–81. https://doi.org/10.1016/j.jaad.2009.10.048.

    Article  PubMed  Google Scholar 

  3. Chicharro-Alcántara D, Rubio-Zaragoza M, Damiá-Giménez E, Carrillo-Poveda JM, Cuervo-Serrato B, Peláez-Gorrea P, Sopena-Juncosa JJ. Platelet rich plasma: new insights for cutaneous wound healing management. J Funct Biomater. 2018;9(1):10. https://doi.org/10.3390/jfb9010010.

    Article  CAS  PubMed Central  Google Scholar 

  4. Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, et al. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther. 2019;10:111. https://doi.org/10.1186/s13287-019-1212-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Beekman J, Hew J, Jackson S, Issler-Fisher AC, Parungao R, Lajevardi SS, Li Z, Maitz PK. Burn injury: challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev. 2018;1(123):3–17. https://doi.org/10.1016/j.addr.2017.09.018.

    Article  CAS  Google Scholar 

  6. Powers JG, Morton LM, Phillips TJ. Dressings for chronic wounds. Dermatol Ther. 2013;26(3):197–206. https://doi.org/10.1111/dth.12055.

    Article  PubMed  Google Scholar 

  7. Percival SL, McCarty S, Hunt JA, Woods EJ. The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen. 2014;22(2):174–86. https://doi.org/10.1111/wrr.12125.

    Article  PubMed  Google Scholar 

  8. Okur ME, Karantas ID, Şenyiğit Z, Okur NÜ, Siafaka PI. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharm Sci. 2020. https://doi.org/10.1016/j.ajps.2019.11.008.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kalashnikova I, Das S, Seal S. Nanomaterials for wound healing: scope and advancement. Nanomedicine. 2015;10(16):2593–612. https://doi.org/10.2217/nnm.15.82.

    Article  CAS  PubMed  Google Scholar 

  10. Sharifi S. Mohammad Javad Hajipour, Lisa Gould, and Morteza Mahmoudi. Mol Pharm. 2021;18(2):550–75. https://doi.org/10.1021/acs.molpharmaceut.0c00346.

    Article  CAS  PubMed  Google Scholar 

  11. Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, Daunert S. Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent Sci. 2017;3(3):163–75. https://doi.org/10.1021/acscentsci.6b00371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alberti TS, Coelho D, Voytena A, Pitz H, de Pra M, Mazzarino L, Kuhnen S, M Ribeiro-do-Valle R, Maraschin M, Veleirinho B. Nanotechnology: a promising tool towards wound healing. Current Pharmaceut Des. 2017;23(24):3515–28. https://doi.org/10.2174/1381612823666170503152550

  13. Rajendran NK, Kumar SS, Houreld NN, Abrahamse H. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol. 2018;1(44):421–30. https://doi.org/10.1016/j.jddst.2018.01.009.

    Article  CAS  Google Scholar 

  14. Bekeschus S, Schmidt A, Weltmann KD, von Woedtke T. The plasma jet kINPen–A powerful tool for wound healing. Clin Plasma Med. 2016;4(1):19–28. https://doi.org/10.1016/j.cpme.2016.01.001.

    Article  Google Scholar 

  15. Schmidt A, Liebelt G, Nießner F, von Woedtke T, Bekeschus S. Gas plasma-spurred wound healing is accompanied by regulation of focal adhesion, matrix remodeling, and tissue oxygenation. Redox Biol. 2021;1(38):101809. https://doi.org/10.1016/j.redox.2020.101809.

    Article  CAS  Google Scholar 

  16. Arany PR. Craniofacial wound healing with photobiomodulation therapy: new insights and current challenges. J Dent Res. 2016;95(9):977–84. https://doi.org/10.1177/0022034516648939.

    Article  CAS  PubMed  Google Scholar 

  17. Mohseni S, Aalaa M, Atlasi R, et al. The effectiveness of negative pressure wound therapy as a novel management of diabetic foot ulcers: an overview of systematic reviews. J Diabetes Metab Disord. 2019;18:625–41. https://doi.org/10.1007/s40200-019-00447-6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341(10):738–46. https://doi.org/10.1056/NEJM199909023411006.

    Article  CAS  PubMed  Google Scholar 

  19. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015;173(2):370–8. https://doi.org/10.1111/bjd.13954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Werdin F, Tenenhaus M, Rennekampff HO. Chronic wound care. Lancet. 2008;372(9653):1860–2. https://doi.org/10.1016/S0140-6736(08)61793-6.

    Article  PubMed  Google Scholar 

  21. Dai C, Shih S, Khachemoune A. Skin substitutes for acute and chronic wound healing: an updated review. J Dermatol Treat. 2020;31(6):639–48. https://doi.org/10.1080/09546634.2018.1530443.

    Article  CAS  Google Scholar 

  22. Harding KG, Morris HL, Patel GK. Healing chronic wounds. BMJ. 2002;324(7330):160–3. https://doi.org/10.1136/bmj.324.7330.160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Medina A, Scott PG, Ghahary A, Tredget EE. Pathophysiology of chronic nonhealing wounds. J Burn Care Rehabil. 2005;26(4):306–19. https://doi.org/10.1097/01.BCR.0000169887.04973.3A.

    Article  PubMed  Google Scholar 

  24. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015;4(9):560–82. https://doi.org/10.1089/wound.2015.0635.

    Article  Google Scholar 

  25. Guo SA, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29. https://doi.org/10.1177/0022034509359125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Greaves NS, Ashcroft KJ, Baguneid M, Bayat A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci. 2013;72(3):206–17. https://doi.org/10.1016/j.jdermsci.2013.07.008.

    Article  CAS  PubMed  Google Scholar 

  27. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528–42. https://doi.org/10.1177/147323000903700531.

    Article  CAS  PubMed  Google Scholar 

  28. Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Investig. 2007;117(5):1219–22. https://doi.org/10.1172/JCI32169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. George Broughton II, Janis JE, Attinger CE. Wound healing: an overview. Plastic Reconstruct Surg. 2006;117(7S):1e-S. https://doi.org/10.1097/01.prs.0000222562.60260.f9.

    Article  CAS  Google Scholar 

  30. Gethin G. Understanding the inflammatory process in wound healing. British journal of community nursing. 2012;17(Sup3):S17–22. https://doi.org/10.12968/bjcn.2012.17.Sup3.S17

  31. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601. https://doi.org/10.1111/j.1524-475X.2008.00410.x.

    Article  PubMed  Google Scholar 

  32. Fenyo IM, Gafencu AV. The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology. 2013;218(11):1376–84. https://doi.org/10.1016/j.imbio.2013.06.005.

    Article  CAS  PubMed  Google Scholar 

  33. Fujiwara N, Kobayashi K. Macrophages in inflammation. Current Drug Targets Inflamm Allergy. 2005;4(3):281–6. https://doi.org/10.2174/1568010054022024.

    Article  CAS  Google Scholar 

  34. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73(20):3861–85. https://doi.org/10.1007/s00018-016-2268-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Minutti CM, Knipper JA, Allen JE, Zaiss DM. Tissue-specific contribution of macrophages to wound healing. In Seminars in cell & developmental biology. vol. 61. Academic Press; 2017. p. 3–11. https://doi.org/10.1016/j.semcdb.2016.08.006

  36. Serra MB, Barroso WA, Silva NN, Silva SD, Borges AC, Abreu IC, Borges MO. From inflammation to current and alternative therapies involved in wound healing. Int J Inflamm. 2017. https://doi.org/10.1155/2017/3406215

  37. Soneja A, Drews M, Malinski T. Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol Rep. 2005;57:108.

    PubMed  Google Scholar 

  38. Iizuka M, Konno S. Wound healing of intestinal epithelial cells. World J Gastroenterol WJG. 2011;17(17):2161. https://doi.org/10.3748/wjg.v17.i17.2161.

    Article  PubMed  Google Scholar 

  39. Zhao B, Zhang Y, Han S, Zhang W, Zhou Q, Guan H, Liu J, Shi J, Su L, Hu D. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J Mol Histol. 2017;48(2):121–32. https://doi.org/10.1007/s10735-017-9711-x.

    Article  CAS  PubMed  Google Scholar 

  40. Liu CY, Kao WW. Corneal epithelial wound healing. Prog Mol Biol Transl Sci. 2015;1(134):61–71. https://doi.org/10.1016/bs.pmbts.2015.05.002.

    Article  Google Scholar 

  41. Häkkinen L, Larjava H, Koivisto L. Granulation tissue formation and remodeling. Endod Top. 2011;24(1):94–129. https://doi.org/10.1111/etp.12008.

    Article  Google Scholar 

  42. Berlanga-Acosta J, Schultz GS, López-Mola E, Guillen-Nieto G, García-Siverio M, Herrera-Martínez L. Glucose toxic effects on granulation tissue productive cells: the diabetics’ impaired healing. BioMed Res Int. 2013. https://doi.org/10.1155/2013/256043

  43. Douglas HE. TGF-β in wound healing: a review. J Wound Care. 2010;19(9):403–6. https://doi.org/10.12968/jowc.2010.19.9.78235.

    Article  CAS  PubMed  Google Scholar 

  44. Teller P, White TK. The physiology of wound healing: injury through maturation. Perioper Nursing Clin. 2011;6(2):159–70. https://doi.org/10.1016/j.cpen.2011.04.001.

    Article  Google Scholar 

  45. Rognoni E, Pisco AO, Hiratsuka T, Sipilä KH, Belmonte JM, Mobasseri SA, Philippeos C, Dilão R, Watt FM. Fibroblast state switching orchestrates dermal maturation and wound healing. Molecular Syst Biol. 2018;14(8):e8174. https://doi.org/10.15252/msb.20178174.

    Article  Google Scholar 

  46. Potter M, Banwell P, Baldwin C, Clayton E, Irvine L, Linge C, et al. In vitro optimisation of topical negative pressure regimens for angiogenesis into synthetic dermal replacements. Burns. 2008;34(2):164–74. https://doi.org/10.1016/j.burns.2007.06.020.

    Article  PubMed  Google Scholar 

  47. Huang C, Leavitt T, Bayer LR, Orgill DP. Effect of negative pressure wound therapy on wound healing. Curr Probl Surg. 2014;51(7):301–31. https://doi.org/10.1007/978-3-319-66990-8_12.

    Article  PubMed  Google Scholar 

  48. Uhl E, Sirsjö A, Haapaniemi T, Nilsson G, Nylander G. Hyperbaric oxygen improves wound healing in normal and ischemic skin tissue. Plast Reconstr Surg. 1994;93(4):835–41.

    Article  CAS  Google Scholar 

  49. Duzgun AP, Satır HZ, Ozozan O, Saylam B, Kulah B, Coskun F. Effect of hyperbaric oxygen therapy on healing of diabetic foot ulcers. J Foot Ankle Surg. 2008;47(6):515–9. https://doi.org/10.1053/j.jfas.2008.08.002.

    Article  PubMed  Google Scholar 

  50. Weiser JR, Saltzman WM. Controlled release for local delivery of drugs: barriers and models. J Controlled Release. 2014;190:664–73. https://doi.org/10.1016/j.jconrel.2014.04.048.

    Article  CAS  Google Scholar 

  51. Sussman C, Bates-Jensen BM. Wound care: a collaborative practice manual. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  52. Gunavathi P. Development of combined wound dressings made of nylon-6/PCL nanomembrane. In: Shodhganga, editor. Wound dressings. 2015. p. 119–40.

  53. Rueda Lopez J, Arboix Perejamo M, Munoz Bueno AM, Rosell Moreno C, Blanco Blanco J, Ballester Torralba J, et al. Combined polyurethane foam and hydrogel dressing. Outcome in lesions of diverse etiology. Revista de Enfermeria. 2004;27(11):51–6.

    PubMed  Google Scholar 

  54. Maver T, Gradišnik L, Kureˇciˇc M, Hribernik S, Smrke DM, Maver U, et al. Layering of different materials to achieve optimal conditions for treatment of painful wounds. Int J Pharm. 2017;529(1–2):576–88. https://doi.org/10.1016/j.ijpharm.2017.07.043.

    Article  CAS  PubMed  Google Scholar 

  55. Jaklic D, Lapanje A, Zupancic K, Smrke D, Gunde-Cimerman N. Selective antimicrobial activity of maggots against pathogenic bacteria. J Med Microbiol. 2008;57(Pt 5):617–25. https://doi.org/10.1099/jmm.0.47515-0.

    Article  PubMed  Google Scholar 

  56. Shi L, Carson D. Collagenase Santyl ointment: a selective agent for wound debridement. J Wound Ostomy Continence Nurs. 2009;36(6S):S12–6. https://doi.org/10.1097/WON.0b013e3181bfdd1a.

    Article  PubMed  Google Scholar 

  57. Sherman RA. Maggot therapy takes us back to the future of wound care: new and improved maggot therapy for the 21st century. J Diabetes Sci Technol. 2009;3(2):336–44. https://doi.org/10.1177/193229680900300215.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Weiss EA, Oldham G, Lin M, Foster T, Quinn JV. Water is a safe and effective alternative to sterile normal saline for wound irrigation prior to suturing: a prospective, double-blind, randomised, controlled clinical trial. BMJ Open. 2013;3(1). http://dx.doi.org/https://doi.org/10.1136/bmjopen-2012-001504

  59. Halstead FD, Rauf M, Moiemen NS, Bamford A, Wearn CM, Fraise AP, Lund PA, Oppenheim BA, Webber MA. The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PLoS ONE. 2015;10(9):e0136190. https://doi.org/10.1371/journal.pone.0136190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dai T, Huang YY, Sharma SK, Hashmi JT, Kurup DB, Hamblin MR. Topical antimicrobials for burn wound infections. Recent patents on anti-infective drug discovery. 2010;5(2):124–51. https://doi.org/10.2174/157489110791233522

  61. Verbanic S, Shen Y, Lee J, Deacon JM, Chen IA. Microbial predictors of healing and short-term effect of debridement on the microbiome of chronic wounds. NPJ Biofilms Microbiom. 2020;6(1):1–11. https://doi.org/10.1038/s41522-020-0130-5.

    Article  Google Scholar 

  62. Madhok BM, Vowden K, Vowden P. New techniques for wound debridement. Int Wound J. 2013;10(3):247–51. https://doi.org/10.1111/iwj.12045.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Falabella AF. Debridement and wound bed preparation. Dermatol Ther. 2006;19(6):317–25. https://doi.org/10.1111/j.1529-8019.2006.00090.x.

    Article  PubMed  Google Scholar 

  64. Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ. Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm. 2018;1(127):130–41. https://doi.org/10.1016/j.ejpb.2018.02.022.

    Article  CAS  Google Scholar 

  65. Dhivya S, Padma VV, Santhini E. Wound dressings—a review. BioMedicine. 2015;5(4). https://doi.org/10.7603/s40681-015-0022-9

  66. Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol. 2010;21(2):77–95. https://doi.org/10.1002/pat.1625.

    Article  CAS  Google Scholar 

  67. Thu HE, Zulfakar MH, Ng SF. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int J Pharm. 2012;434(1–2):375–83. https://doi.org/10.1016/j.ijpharm.2012.05.044.

    Article  CAS  PubMed  Google Scholar 

  68. Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite materials for wound dressing application: a mini review. Carbohyd Polym. 2020;15(236): 116025. https://doi.org/10.1016/j.carbpol.2020.116025.

    Article  CAS  Google Scholar 

  69. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2005;26(32):6335–42. https://doi.org/10.1016/j.biomaterials.2005.04.012.

    Article  CAS  PubMed  Google Scholar 

  70. ** SG, Yousaf AM, Kim KS, Kim DW, Kim DS, Kim JK, Yong CS, Youn YS, Kim JO, Choi HG. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings. Int J Pharm. 2016;501(1–2):160–6. https://doi.org/10.1016/j.ijpharm.2016.01.044.

    Article  CAS  PubMed  Google Scholar 

  71. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine—challenge and perspectives. Angew Chem Int Ed. 2009;48(5):872–97. https://doi.org/10.1002/anie.200802585.

    Article  CAS  Google Scholar 

  72. Berthet M, Gauthier Y, Lacroix C, Verrier B, Monge C. Nanoparticle-based dressing: the future of wound treatment? Trends Biotechnol. 2017;35(8):770–84. https://doi.org/10.1016/j.tibtech.2017.05.005.

    Article  CAS  PubMed  Google Scholar 

  73. Mahmoudi M, Zhao M, Matsuura Y, Laurent S, Yang PC, Bernstein D, Ruiz-Lozano P, Serpooshan V. Infection-resistant MRI-visible scaffolds for tissue engineering applications. BioImpacts. 2016;6(2):111. https://doi.org/10.15171/bi.2016.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30(10):499–511. https://doi.org/10.1016/j.tibtech.2012.06.004.

    Article  CAS  PubMed  Google Scholar 

  75. Liu Y, Shi L, Su L, van der Mei HC, Jutte PC, Ren Y, Busscher HJ. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev. 2019;48(2):428–46. https://doi.org/10.1039/C7CS00807D.

    Article  CAS  PubMed  Google Scholar 

  76. Greulich C, Braun D, Peetsch A, Diendorf J, Siebers B, Epple M, Köller M. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv. 2012;2(17):6981–7. https://doi.org/10.1039/C2RA20684F.

    Article  CAS  Google Scholar 

  77. Khampieng T, Brikshavana P, Supaphol P. Silver nanoparticle embedded poly (vinyl pyrrolidone) hydrogel dressing: gamma-ray synthesis and biological evaluation. J Biomater Sci Polym Ed. 2014;25(8):826–42. https://doi.org/10.1080/09205063.2014.910154.

    Article  CAS  PubMed  Google Scholar 

  78. Shankar S, Jaiswal L, Aparna RS, Prasad RG, Kumar GP, Manohara CM. Wound healing potential of green synthesized silver nanoparticles prepared from Lansium domesticum 90 wound healing—new insights into ancient challenges fruit peel extract. Mater Exp. 2015;5(2):159–64. https://doi.org/10.1166/mex.2015.1225.

    Article  CAS  Google Scholar 

  79. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: review of the literature. Burns. 2007;33(2):139–48. https://doi.org/10.1016/j.burns.2006.06.010.

    Article  PubMed  Google Scholar 

  80. Oliveira RN, Rouzé R, Quilty B, Alves GG, Soares GD, Thiré RM, McGuinness GB. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings. Interf Focus. 2014;4(1):20130049. https://doi.org/10.1098/rsfs.2013.0049.

    Article  CAS  Google Scholar 

  81. Yan X, Fang WW, Xue J, Sun TC, Dong L, Zha Z, Qian H, Song YH, Zhang M, Gong X, Lu Y. Thermoresponsive in situ forming hydrogel with sol-gel irreversibility for effective methicillin-resistant Staphylococcus aureus infected wound healing. ACS Nano. 2019;13(9):10074–84. https://doi.org/10.1021/acsnano.9b02845.

    Article  CAS  PubMed  Google Scholar 

  82. Miao J, Pangule RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, Dordick JS. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials. 2011;32(36):9557–67. https://doi.org/10.1016/j.biomaterials.2011.08.080.

    Article  CAS  PubMed  Google Scholar 

  83. Pivec T, Hribernik S, Ribitsch V, Stana-Kleinschek K, Fzs PL, et al. Antimicrobial cellulose material and process of its production: European Patent Application No. EP13151727.8, 17 (referenceP003373EP), SubmissionNumber1966536:Eu päischesPatentamt; 2013

  84. Pivec T, Hribernik S, Kolar M, Kleinschek KS. Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles. Carbohyd Polym. 2017;1(163):92–100.

    Article  Google Scholar 

  85. Mao C, **ang Y, Liu X, Cui Z, Yang X, Yeung KW, Pan H, Wang X, Chu PK, Wu S. Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@ AgCl/ZnO nanostructures. ACS Nano. 2017;11(9):9010–21. https://doi.org/10.1021/acsnano.7b03513.

    Article  CAS  PubMed  Google Scholar 

  86. Yuwen L, Sun Y, Tan G, **u W, Zhang Y, Weng L, Teng Z, Wang L. MoS 2@ polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of Staphylococcus aureus biofilms and wound infection. Nanoscale. 2018;10(35):16711–20. https://doi.org/10.1039/C8NR04111C.

    Article  CAS  PubMed  Google Scholar 

  87. Qiao Y, He J, Chen W, Yu Y, Li W, Du Z, **e T, Ye Y, Hua SY, Zhong D, Yao K. Light-activatable synergistic therapy of drug-resistant bacteria-infected cutaneous chronic wounds and nonhealing keratitis by cupriferous hollow nanoshells. ACS Nano. 2020;14(3):3299–315. https://doi.org/10.1021/acsnano.9b08930.

    Article  CAS  PubMed  Google Scholar 

  88. Li M, Liu X, Tan L, Cui Z, Yang X, Li Z, Zheng Y, Yeung KW, Chu PK, Wu S. Noninvasive rapid bacteria-killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel. Biomater Sci. 2018;6(8):2110–21. https://doi.org/10.1039/C8BM00499D.

    Article  CAS  PubMed  Google Scholar 

  89. Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, Chamilos G, Feldmeyer L, Marinari B, Chon S, Vence L. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5(1):1–6. https://doi.org/10.1038/ncomms6621.

    Article  CAS  Google Scholar 

  90. Fumakia M, Ho EA. Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol Pharm. 2016;13(7):2318–31. https://doi.org/10.1021/acs.molpharmaceut.6b00099.

    Article  CAS  PubMed  Google Scholar 

  91. Koria P. Delivery of growth factors for tissue regeneration and wound healing. BioDrugs. 2012;26(3):163–75. https://doi.org/10.2165/11631850-000000000-0000.

    Article  CAS  PubMed  Google Scholar 

  92. Hardwicke J, Ferguson EL, Moseley R, Stephens P, Thomas DW, Duncan R. Dextrin–rhEGF conjugates as bioresponsive nanomedicines for wound repair. J Control Release. 2008;130(3):275–83. https://doi.org/10.1016/j.jconrel.2008.07.023.

    Article  CAS  PubMed  Google Scholar 

  93. Fabiilli ML, Wilson CG, Padilla F, Martín-Saavedra FM, Fowlkes JB, Franceschi RT. Acoustic droplet–hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness. Acta Biomater. 2013;9(7):7399–409. https://doi.org/10.1016/j.actbio.2013.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Johnson NR, Wang Y. Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing. J Control Release. 2013;166(2):124–9. https://doi.org/10.1016/j.jconrel.2012.11.004.

    Article  CAS  PubMed  Google Scholar 

  95. Lin YK, Chen KH, Ou KL, Liu M. Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym. 2011;26(5):508–18. https://doi.org/10.1177/0883911511415390.

    Article  CAS  Google Scholar 

  96. Ribeiro MP, Morgado PI, Miguel SP, Coutinho P, Correia IJ. Dextran based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng C. 2013;33(5):2958–66. https://doi.org/10.1016/j.msec.2013.03.025.

    Article  CAS  Google Scholar 

  97. Zhang M, Rehman J, Malik AB. Endothelial progenitor cells and vascular repair. Curr Opin Hematol. 2014;21(3):224. https://doi.org/10.1097/MOH.0000000000000041.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hassan W, Dong Y, Wang W. Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res Ther. 2013;4(2):32. https://doi.org/10.1186/scrt182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Peng LH, Wei W, Qi XT, Shan YH, Zhang FJ, Chen X, Zhu QY, Yu L, Liang WQ, Gao JQ. Epidermal stem cells manipulated by pDNA-VEGF165/CYD-PEI nanoparticles loaded gelatin/β-TCP matrix as a therapeutic agent and gene delivery vehicle for wound healing. Mol Pharm. 2013;10(8):3090–102. https://doi.org/10.1021/mp400162k.

    Article  CAS  PubMed  Google Scholar 

  100. Im GB, Kim YH, Kim YJ, Kim SW, Jung E, Jeong GJ, Wang K, Kim J, Kim DI, Kim TH, Yi GR. Enhancing the wound healing effect of conditioned medium collected from mesenchymal stem cells with high passage number using bioreducible nanoparticles. Int J Mol Sci. 2019;20(19):4835. https://doi.org/10.3390/ijms20194835.

    Article  CAS  PubMed Central  Google Scholar 

  101. Rasouli M, Fallah N, Ostrikov K. Lung cancer oncotherapy through novel modalities: Gas plasma and nanoparticle technologies. IntechOpen. 2020. https://doi.org/10.5772/intechopen.95494.

  102. Rasouli M, Fallah N, Ostrikov K. Lung cancer oncotherapy through novel modalities: gas plasma and nanoparticle technologies [online first]. IntechOpen. 2021. https://doi.org/10.5772/intechopen.95494.

  103. Rasouli M, Mehdian H, Hajisharifi K, Amini E, Ostrikov K, Robert E. Plasma processes polym. 2021;e2100074. https://doi.org/10.1002/ppap.202100074.

  104. Schmidt A, Bekeschus S. Redox for repair: cold physical plasmas and nrf2 signaling promoting wound healing. Antioxidants. 2018;7(10):146. https://doi.org/10.3390/antiox7100146.

    Article  CAS  PubMed Central  Google Scholar 

  105. Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep. 2016;4(630):1–84. https://doi.org/10.1016/j.physrep.2016.03.003.

    Article  CAS  Google Scholar 

  106. Stratmann B, Costea TC, Nolte C, Hiller J, Schmidt J, Reindel J, Masur K, Motz W, Timm J, Kerner W, Tschoepe D. Effect of cold atmospheric plasma therapy vs standard therapy placebo on wound healing in patients with diabetic foot ulcers: a randomized clinical trial. JAMA Netw Open. 2020;3(7):e2010411. https://doi.org/10.1001/jamanetworkopen.2020.10411.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Reuter S, Von Woedtke T, Weltmann KD. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J Phys D Appl Phys. 2018;51(23): 233001. https://doi.org/10.1088/1361-6463/aab3ad.

    Article  CAS  Google Scholar 

  108. Von Woedtke T, Reuter S, Masur K, Weltmann KD. Plasmas for medicine. Phys Rep. 2013;530(4):291–320. https://doi.org/10.1016/j.physrep.2013.05.005.

    Article  CAS  Google Scholar 

  109. Lu X, Keidar M, Laroussi M, Choi E, Szili EJ, Ostrikov K. Transcutaneous plasma stress: from soft-matter models to living tissues. Mater Sci Eng R Rep. 2019;1(138):36–59. https://doi.org/10.1016/j.mser.2019.04.002.

    Article  Google Scholar 

  110. Lloyd G, Friedman G, Jafri S, Schultz G, Fridman A, Harding K. Gas plasma: medical uses and developments in wound care. Plasma Process Polym. 2010;7(3–4):194–211. https://doi.org/10.1002/ppap.200900097.

    Article  CAS  Google Scholar 

  111. Kalghatgi S, Friedman G, Fridman A, Clyne AM. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann Biomed Eng. 2010;38(3):748–57. https://doi.org/10.1007/s10439-009-9868-x.

    Article  PubMed  Google Scholar 

  112. Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G. Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process. 2007;27(2):163–76. https://doi.org/10.1007/s11090-007-9048-4.

    Article  CAS  Google Scholar 

  113. Braný D, Dvorská D, Halašová E, Škovierová H. Cold atmospheric plasma: a powerful tool for modern medicine. Int J Mol Sci. 2020;21(8):2932. https://doi.org/10.3390/ijms21082932.

    Article  CAS  PubMed Central  Google Scholar 

  114. Isbary G, Heinlin J, Shimizu T, Zimmermann JL, Morfill G, Schmidt HU, Monetti R, Steffes B, Bunk W, Li Y, Klaempfl T. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167(2):404–10. https://doi.org/10.1111/j.1365-2133.2012.10923.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J, Karrer S, Landthaler M, Shimizu T, Steffes B, Bunk W. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163(1):78–82. https://doi.org/10.1111/j.1365-2133.2010.09744.x.

    Article  CAS  PubMed  Google Scholar 

  116. Heinlin J, Isbary G, Stolz W, Zeman F, Landthaler M, Morfill G, Shimizu T, Zimmermann JL, Karrer S. A randomized two-sided placebo-controlled study on the efficacy and safety of atmospheric non-thermal argon plasma for pruritus. J Eur Acad Dermatol Venereol. 2013;27(3):324–31. https://doi.org/10.1111/j.1468-3083.2011.04395.x.

    Article  CAS  PubMed  Google Scholar 

  117. Isbary G, Stolz W, Shimizu T, et al. Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: results of an open retrospective randomized controlled study in vivo. Clin Plasma Med. 2013;1:25–30. https://doi.org/10.1016/j.cpme.2013.06.001.

    Article  Google Scholar 

  118. Mirpour S, Fathollah S, Mansouri P, Larijani B, Ghoranneviss M, Tehrani MM, Amini MR. Cold atmospheric plasma as an effective method to treat diabetic foot ulcers: a randomized clinical trial. Sci Rep. 2020;10(1):1–9. https://doi.org/10.1038/s41598-020-67232-x.

    Article  CAS  Google Scholar 

  119. Arndt S, Unger P, Berneburg M, Bosserhoff AK, Karrer S. Cold atmospheric plasma (CAP) activates angiogenesis-related molecules in skin keratinocytes, fibroblasts and endothelial cells and improves wound angiogenesis in an autocrine and paracrine mode. J Dermatol Sci. 2018;89(2):181–90. https://doi.org/10.1016/j.jdermsci.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  120. Arndt S, Unger P, Wacker E, Shimizu T, Heinlin J, Li YF, Thomas HM, Morfill GE, Zimmermann JL, Bosserhoff AK, Karrer S. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS ONE. 2013;8(11): e79325. https://doi.org/10.1371/journal.pone.0079325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Frescaline N, Duchesne C, Favier M, Onifarasoaniaina R, Guilbert T, Uzan G, Banzet S, Rousseau A, Lataillade JJ. Physical plasma therapy accelerates wound re-epithelialisation and enhances extracellular matrix formation in cutaneous skin grafts. J Pathol. 2020;252(4):451–64. https://doi.org/10.1002/path.5546.

    Article  CAS  PubMed  Google Scholar 

  122. Schmidt A, Liebelt G, Striesow J, Freund E, von Woedtke T, Wende K, Bekeschus S. The molecular and physiological consequences of cold plasma treatment in murine skin and its barrier function. Free Radical Biol Med. 2020;1(161):32–49. https://doi.org/10.1016/j.freeradbiomed.2020.09.026.

    Article  CAS  Google Scholar 

  123. Duchesne C, Banzet S, Lataillade JJ, Rousseau A, Frescaline N. Cold atmospheric plasma modulates endothelial nitric oxide synthase signalling and enhances burn wound neovascularisation. J Pathol. 2019;249(3):368–80. https://doi.org/10.1002/path.5323.

    Article  CAS  PubMed  Google Scholar 

  124. Amini M, Sheikh Hosseini M, Fatollah S, et al. Beneficial effects of cold atmospheric plasma on inflammatory phase of diabetic foot ulcers; a randomized clinical trial. J Diabetes Metab Disord. 2020;19:895–905. https://doi.org/10.1007/s40200-020-00577-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nizamoglu S, Gather MC, Humar M, Choi M, Kim S, Kim KS, et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat Commun. 2016;7:10374. https://doi.org/10.1038/ncomms10374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Humar M, Kwok SJ, Choi M, Yetisen AK, Cho S, Yun S-H. Toward biomaterial-based implantable photonic devices. Power. 2016;1:0–11. https://doi.org/10.1515/nanoph-2016-0003.

    Article  Google Scholar 

  127. Leal-Junior A, Guo J, Min R, Fernandes AJ, Frizera A, Marques C. Photonic smart bandage for wound healing assessment. Photon Res. 2021;9(3):272–80. https://doi.org/10.1364/PRJ.410168.

    Article  Google Scholar 

  128. Scott-Carnell LA, Siochi EJ, Leong KW. Device and method for healing wounds. Google Patents; 2010.

  129. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;1(122):34–47. https://doi.org/10.1016/j.biomaterials.2017.01.011.

    Article  CAS  Google Scholar 

  130. Li M, Chen J, Shi M, Zhang H, Ma PX, Guo B. Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing. Chem Eng J. 2019;1(375):121999. https://doi.org/10.1016/j.cej.2019.121999.

    Article  CAS  Google Scholar 

  131. Tang P, Han L, Li P, Jia Z, Wang K, Zhang H, Tan H, Guo T, Lu X. Mussel-inspired electroactive and antioxidative scaffolds with incorporation of polydopamine-reduced graphene oxide for enhancing skin wound healing. ACS Appl Mater Interf. 2019;11(8):7703–14. https://doi.org/10.1021/acsami.8b18931.

    Article  CAS  Google Scholar 

  132. Mao L, Hu S, Gao Y, Wang L, Zhao W, Fu L, Cheng H, **a L, **e S, Ye W, Shi Z. Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv Healthcare Mater. 2020;9(19):2000872. https://doi.org/10.1002/adhm.202000872.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadia Fallah or Mohammad Reza Amini.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallah, N., Rasouli, M. & Amini, M.R. The current and advanced therapeutic modalities for wound healing management. J Diabetes Metab Disord 20, 1883–1899 (2021). https://doi.org/10.1007/s40200-021-00868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00868-2

Keywords

Navigation