Log in

Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti–6Al–4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In actual physiological environments, bacteria can activate the immune system and release lactic acid. However, the detailed contribution of lactic acid to the passivation behavior of titanium (Ti) alloys is still unclear. The current work investigated the in vitro passivation behavior of Ti–6Al–4V (TC4) alloys fabricated by laser powder bed fusion in Hank's solution with and without adding lactic acid. Electrochemical methods, inductively coupled plasma atomic emission spectrometer, and X-ray photoelectron spectroscopy were jointly used. Adding lactic acid decreases the corrosion resistance of samples by degrading the formed passive film. The film formed in the (lactic acid)-containing solution exhibits a higher level of oxygen vacancies and a lower thickness, attributed to the suppressed formation of Ti4+ transformed from Ti3+ and Ti2+. Moreover, the presence of lactic acid would increase the open circuit potential, relieve the ions release, and hinder the deposition of calcium phosphates within 24 h immersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. P. Qin, L.Y. Chen, C.H. Zhao, Y.J. Liu, C.D. Cao, H. Sun, L.C. Zhang, Corros. Sci. 189, 109609 (2021)

    Article  CAS  Google Scholar 

  2. S. Qin, X. Xu, Y. Lu, L. Li, T. Huang, J. Lin, Acta Metall. Sin. -Engl. Lett. 35, 812 (2022)

    Article  CAS  Google Scholar 

  3. L.C. Zhang, L.Y. Chen, Adv. Eng. Mater. 21, 801215 (2019)

    Google Scholar 

  4. S.B. Sun, L.J. Zheng, J.H. Liu, H. Zhang, Rare Met. 42, 1353 (2023)

    Article  Google Scholar 

  5. P. Qin, Y. Liu, T.B. Sercombe, Y. Li, C. Zhang, C. Cao, H. Sun, L.C. Zhang, A.C.S. Biomater, Sci. Eng. 4, 2633 (2018)

    CAS  Google Scholar 

  6. C. Xu, L.Y. Chen, C. Zheng, Z.Y. Zhang, R. Li, H.Y. Yang, J. Peng, L. Zhang, L.C. Zhang, Adv. Eng. Mater. 24, 2200674 (2022)

    Article  CAS  Google Scholar 

  7. L.Y. Chen, S.X. Liang, Y. Liu, L.C. Zhang, Mater. Sci. Eng. R Rep. 146, 100648 (2021)

    Article  Google Scholar 

  8. X.N. Hao, X. Liu, Rare Met. 41, 3677 (2022)

    Article  CAS  Google Scholar 

  9. C. Xu, Y. Peng, L.Y. Chen, T.Y. Zhang, S. He, K.H. Wang, Corros. Sci. 215, 111048 (2023)

    Article  CAS  Google Scholar 

  10. X. **, P. Ye, H. Ji, Z. Suo, B. Wei, X. Li, W. Fang, Int. J. Miner. Metall. Mater. 29, 2232 (2022)

    Article  CAS  Google Scholar 

  11. D.C. Rodrigues, P. Valderrama, T.G. Wilson, K. Palmer, A. Thomas, S. Sridhar, A. Adapalli, M. Burbano, C. Wadhwani, Materials 6, 5258 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Z. Guo, X. Shen, F. Liu, J. Guan, Y. Zhang, F. Dong, Y. Wang, X. Yuan, B. Wang, L. Luo, Y. Su, J. Cheng, J. Alloys Compd. 960, 170739 (2023)

    Article  CAS  Google Scholar 

  13. J.C.M. Souza, K. Apaza-Bedoya, C.A.M. Benfatti, F.S. Silva, B. Henriques, Metals 10, 1272 (2020)

    Article  CAS  Google Scholar 

  14. L.Y. Chen, H.Y. Zhang, C. Zheng, H.Y. Yang, P. Qin, C. Zhao, S. Lu, S.X. Liang, L. Chai, L.C. Zhang, Mater. Des. 208, 109907 (2021)

    Article  CAS  Google Scholar 

  15. Y.W. Cui, L.Y. Chen, P. Qin, R. Li, Q. Zang, J. Peng, L. Zhang, S. Lu, L. Wang, L.C. Zhang, Corros. Sci. 203, 110333 (2022)

    Article  CAS  Google Scholar 

  16. M. Cabrini, A. Carrozza, S. Lorenzi, T. Pastore, C. Testa, D. Manfredi, P. Fino, F. Scenini, J. Mater. Process. Technol. 308, 117730 (2022)

    Article  CAS  Google Scholar 

  17. P.A. Mashimo, Y. Yamamoto, M. Nakamura, H.S. Reynolds, R.J. Genco, J. Periodont. 56, 548 (1985)

    Article  PubMed  CAS  Google Scholar 

  18. P.D. Marsh, Adv. Dent. Res. 8, 263 (1994)

    Article  PubMed  CAS  Google Scholar 

  19. M.A. Houle, D. Grenier, Med. Mal. Infect. 33, 331 (2003)

    Article  Google Scholar 

  20. G. Mabilleau, S. Bourdon, M.L. Joly-Guillou, R. Filmon, M.F. Baslé, D. Chappard, Acta Biomater. 2, 121 (2006)

    Article  PubMed  CAS  Google Scholar 

  21. L. Benea, N. Simionescu-Bogatu, Materials 14, 7404 (2021)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  22. A. Banu, L. Preda, M. Marcu, L.L. Dinca, M.E. Maxim, G. Dobri, Metal. Mater. Trans. A 53, 2060 (2022)

    Article  CAS  Google Scholar 

  23. Q. Qu, L. Wang, Y. Chen, L. Li, Y. He, Z. Ding, Materials 7, 5528 (2014)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. H. Mirzadeh, Int. J. Miner. Metall. Mater. 30, 1278 (2023)

    Article  CAS  Google Scholar 

  25. S. Liu, Y.C. Shin, Mater. Des. 164, 107552 (2019)

    Article  CAS  Google Scholar 

  26. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. **a, M. Qian, Acta Mater. 85, 74 (2015)

    Article  CAS  Google Scholar 

  27. H.Y. Yang, Z. Wang, L.Y. Chen, S.L. Shu, F. Qiu, L.C. Zhang, Compos. Part B: Eng. 209, 108605 (2021)

    Article  CAS  Google Scholar 

  28. L.C. Zhang, H. Attar, Adv. Eng. Mater. 18, 463 (2016)

    Article  CAS  Google Scholar 

  29. L. Chen, J. Li, Y. Zhang, W. Lu, L.C. Zhang, L. Wang, D. Zhang, J. Nucl. Sci. Technol. 53, 496 (2016)

    Article  CAS  Google Scholar 

  30. Y. Bai, X. Gai, S. Li, L.C. Zhang, Y. Liu, Y. Hao, X. Zhang, R. Yang, Y. Gao, Corros. Sci. 123, 289 (2017)

    Article  CAS  Google Scholar 

  31. N. Dai, L.C. Zhang, J. Zhang, Q. Chen, M. Wu, Corros. Sci. 102, 484 (2016)

    Article  CAS  Google Scholar 

  32. C. Man, C. Dong, T. Liu, D. Kong, D. Wang, X. Li, Appl. Surf. Sci. 467, 193 (2019)

    Article  ADS  Google Scholar 

  33. C. Man, C. Dong, Z. Cui, K. **ao, Q. Yu, X. Li, Appl. Surf. Sci. 427, 763 (2018)

    Article  ADS  CAS  Google Scholar 

  34. P. Sang, L.Y. Chen, C. Zhao, Z.-X. Wang, H. Wang, S. Lu, D. Song, J.H. Xu, L.C. Zhang, Metals 9, 1342 (2019)

    Article  CAS  Google Scholar 

  35. Y. Xu, M.Y. Tan, Corros. Sci. 151, 163 (2019)

    Article  CAS  Google Scholar 

  36. D.S. Kong, J.X. Wu, J. Electro. Soc. 155, C32 (2008)

    Article  CAS  Google Scholar 

  37. X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. Misra, Corros. Sci. 145, 80 (2018)

    Article  CAS  Google Scholar 

  38. M. Lakatos-Varsányi, F. Falkenberg, I. Olefjord, Electrochim. Acta 43, 187 (1998)

    Article  Google Scholar 

  39. N. Dai, L.C. Zhang, J. Zhang, X. Zhang, Q. Ni, Y. Chen, M. Wu, C. Yang, Corros. Sci. 111, 703 (2016)

    Article  CAS  Google Scholar 

  40. R. Chelariu, G. Bolat, J. Izquierdo, D. Mareci, D.M. Gordin, T. Gloriant, R.M. Souto, Electrochim. Acta 137, 280 (2014)

    Article  CAS  Google Scholar 

  41. G. Bolat, D. Mareci, R. Chelariu, J. Izquierdo, S. González, R.M. Souto, Electrochim. Acta 113, 470 (2013)

    Article  CAS  Google Scholar 

  42. D.D. Macdonald, Electrochim. Acta 56, 1761 (2011)

    Article  CAS  Google Scholar 

  43. R.M. Fernández-Domene, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, Electrochim. Acta 95, 1 (2013)

    Article  Google Scholar 

  44. Z. Duan, C. Man, C. Dong, Z. Cui, D. Kong, L. Wang, X. Wang, Corros. Sci. 167, 108520 (2020)

    Article  CAS  Google Scholar 

  45. P. Qin, L.Y. Chen, Y.J. Liu, Z. Jia, S.X. Liang, C.H. Zhao, H. Sun, L.C. Zhang, Corros. Sci. 191, 109728 (2021)

    Article  CAS  Google Scholar 

  46. T. Hanawa, Mater. Sci. Eng. C 24, 745 (2004)

    Article  Google Scholar 

  47. R. Azadbakht, T. Almasi, H. Keypour, M. Rezaeivala, Inorg. Chem. Com. 33, 63 (2013)

    Article  CAS  Google Scholar 

  48. Y.W. Cui, L.Y. Chen, Y.H. Chu, L. Zhang, R. Li, S. Lu, L. Wang, L.C. Zhang, Corros. Sci. 215, 111017 (2023)

    Article  CAS  Google Scholar 

  49. L. Chen, J. Li, Y. Zhang, L.C. Zhang, W. Lu, L. Zhang, L. Wang, D. Zhang, Corros. Sci. 100, 651 (2015)

    Article  ADS  CAS  Google Scholar 

  50. L. Guan, Y. Li, G. Wang, Y. Zhang, L.C. Zhang, Electrochim. Acta 285, 172 (2018)

    Article  CAS  Google Scholar 

  51. L.C. Zhang, L.Y. Chen, L. Wang, Adv. Eng. Mater. 22, 1901258 (2020)

    Article  CAS  Google Scholar 

  52. T. Hanawa, M. Ota, Appl. Surf. Sci. 55, 269 (1992)

    Article  ADS  CAS  Google Scholar 

  53. L. Zhang, L.Y. Chen, C. Zhao, Y. Liu, L.C. Zhang, Metals 9, 850 (2019)

    Article  Google Scholar 

  54. Z. Jiang, X. Dai, T. Norby, H. Middleton, Corros. Sci. 53, 815 (2011)

    Article  CAS  Google Scholar 

  55. Z.R. Ye, Z.C. Qiu, Z.B. Wang, Y.G. Zheng, R. Yi, X. Zhou, Acta Metall. Sin. (Engl. Lett.) 33, 839 (2020)

    Article  CAS  Google Scholar 

  56. C. Liu, Y. Li, X. Cheng, X. Li, Acta Metall. Sin. (Engl. Lett.) 35, 1055 (2022)

    Article  Google Scholar 

  57. Y. Cui, L. Chen, L. Wang, J. Cheng, L. Zhang, Metals 13, 415 (2023)

    Article  Google Scholar 

  58. O.E.M. Pohler, Injury 31, D7 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Fundamental Research Program of Jiangsu Province (BK20201000), the Australian Research Council through the Discovery Project (DP110101653, DP130103592), the Basic and Applied Basic Research Foundation of Guangdong Province, China (2022A1515140123, 2021A1515110729) and the Foshan (Southern China) Institute for New Materials (2021AYF25017). The authors are grateful to **ling Zhu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang-Yu Chen, Hong-Yu Yang or Lai-Chang Zhang.

Ethics declarations

Conflict of interest

The authors state that there are no conflict of interest to disclose.

Additional information

Available online at http://springer.longhoe.net/journal/40195

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, YH., Chen, LY., Qin, BY. et al. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti–6Al–4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution. Acta Metall. Sin. (Engl. Lett.) 37, 102–118 (2024). https://doi.org/10.1007/s40195-023-01602-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-023-01602-y

Keywords

Navigation