Log in

Achieving Fine-Grained Microstructure and Superior Mechanical Property in a Plain Low-Carbon Steel Using Heavy Cold Rolling Combined with Short-Time Heat Treatment

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A new thermomechanical process consisting of heavy cold rolling (HCR) and short-time heat treatment (STH) is developed to fabricate fine-grained martensite microstructure in a low-cost plain low-carbon steel. To achieve the optimal mechanical properties after STH, three different ferrite–pearlite (F–P) dual-phase microstructures are prepared via hot rolling (HR), HR and austenitizing, and HR and HCR. The microstructure evolution and the comprehensive mechanical properties of the alloy during STH are then investigated. We find that the volume fractions of transformed martensite after STH increase with decreasing grain sizes of the pre-STH F–P dual phases. The rapid heating and short-time holding of STH promote grain nucleation and inhibit grain growth, resulting in microstructure refinement. The formation of martensites with different morphologies and different carbon concentrations in the HR and HCR + STH alloy is identified, owing to the inhomogeneous carbon distribution by STH. Tensile experiments demonstrate that STH greatly improves the comprehension mechanical properties of the alloy. Excellent mechanical properties, with a yield strength of 1224 MPa, a tensile strength of 1583 MPa, a uniform elongation of 4.0% and a total elongation of 7.3% are achieved in the HR and HCR + STH alloy. These excellent mechanical properties are principally attributed to the microstructure refinement and martensite formation induced by STH, with a yield strength improvement of 134% and a tensile strength improvement of 150% relative to the HR alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Du, G. Liu, Y. Feng, H. Feng, T. Li, F. Zhang, Mater. Sci. Eng. A 868, 144770 (2023)

    Article  CAS  Google Scholar 

  2. T. Islam, H.M.M.A. Rashed, in Reference Module in Materials Science and Materials Engineering (Elsevier, 2019)

  3. T.G. Langdon, Acta Mater. 61, 7035 (2013)

    Article  CAS  Google Scholar 

  4. X. Ji, L. Fu, H. Zheng, J. Peng, W. Wang, A. Shan, Mater. Sci. Eng. A 826, 141977 (2021)

    Article  CAS  Google Scholar 

  5. H. Zheng, L. Fu, Z. Li, X. Ji, Q. Wang, W. Wang, A. Shan, Mater. Today. Commun. 21, 100646 (2019)

    Article  CAS  Google Scholar 

  6. R. Poulain, F. Amann, J. Deya, J. Bourgon, S. Delannoy, F. Prima, Mater. Lett. 317, 132114 (2022)

    Article  CAS  Google Scholar 

  7. T. Morita, S. Tanaka, S. Ninomiya, Mater. Sci. Eng. A 669, 127 (2016)

    Article  CAS  Google Scholar 

  8. A. Karmakar, M. Ghosh, D. Chakrabarti, Mater. Sci. Eng. A 564, 389 (2013)

    Article  CAS  Google Scholar 

  9. G. Liu, S. Zhang, J. Li, J. Wang, Q. Meng, Mater. Sci. Eng. A 669, 387 (2016)

    Article  CAS  Google Scholar 

  10. K. Tomimura, S. Takaki, S. Tanimoto, Y. Tokunaga, ISIJ Int. 31, 721 (1991)

    Article  CAS  Google Scholar 

  11. J.N. Huang, Z.Y. Tang, H. Ding, H. Zhang, L.L. Bi, R.D.K. Misra, Mater. Sci. Eng. A 764, 138231 (2019)

    Article  CAS  Google Scholar 

  12. S. Mishra, A. Mishra, B.K. Show, J. Maity, Mater. Sci. Eng. A 688, 262 (2017)

    Article  CAS  Google Scholar 

  13. A. Saha, D.K. Mondal, K. Biswas, J. Maity, Mater. Sci. Eng. A 534, 465 (2012)

    Article  CAS  Google Scholar 

  14. H. Azizi-Alizamini, M. Militzer, W.J. Poole, Metall. Mater. Trans. A 42, 1544 (2011)

    Article  CAS  Google Scholar 

  15. N. Rani, S. Chahal, A.S. Chauhan, P. Kumar, R. Shukla, S.K. Singh, Mater. Today. Proc. 12, 543 (2019)

    Article  CAS  Google Scholar 

  16. M. Wiessner, E. Gamsjäger, S. van der Zwaag, P. Angerer, Mater. Sci. Eng. A 682, 117 (2017)

    Article  CAS  Google Scholar 

  17. C.N. Li, F.Q. Ji, G. Yuan, J. Kang, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 662, 100 (2016)

    Article  CAS  Google Scholar 

  18. T.T. Huang, R.B. Gou, W.J. Dan, W.G. Zhang, Mater. Sci. Eng. A 672, 88 (2016)

    Article  CAS  Google Scholar 

  19. M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59, 658 (2011)

    Article  CAS  Google Scholar 

  20. Y. Zhu, X. Wu, Prog. Mater. Sci. 131, 101019 (2023)

    Article  CAS  Google Scholar 

  21. J. Zhang, H. Di, Y. Deng, R.D.K. Misra, Mater. Sci. Eng. A 627, 230 (2015)

    Article  CAS  Google Scholar 

  22. A. Ramazani, K. Mukherjee, U. Prahl, W. Bleck, Metall. Mater. Trans. A 43, 3850 (2012)

    Article  CAS  Google Scholar 

  23. F. Jamei, H. Mirzadeh, M. Zamani, Mater. Sci. Eng. A 750, 125 (2019)

    Article  CAS  Google Scholar 

  24. A. Kundu, D.P. Field, Mater. Sci. Eng. A 667, 435 (2016)

    Article  CAS  Google Scholar 

  25. M. Balbi, I. Alvarez-Armas, A. Armas, Mater. Sci. Eng. A 733, 1 (2018)

    Article  CAS  Google Scholar 

  26. M.J. Molaei, A. Ekrami, Mater. Sci. Eng. A 527, 235 (2009)

    Article  Google Scholar 

  27. M. Zamani, H. Mirzadeh, M. Maleki, Mater. Sci. Eng. A 734, 178 (2018)

    Article  CAS  Google Scholar 

  28. N. Saeidi, M. Karimi, M.R. Toroghinejad, Mater. Chem. Phys. 192, 1 (2017)

    Article  CAS  Google Scholar 

  29. S. Nikkhah, H. Mirzadeh, M. Zamani, Mater. Chem. Phys. 230, 1 (2019)

    Article  CAS  Google Scholar 

  30. K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki, Mater. Sci. Eng. A 604, 135 (2014)

    Article  CAS  Google Scholar 

  31. S. Sodjit, V. Uthaisangsuk, Mater. Des. 41, 370 (2012)

    Article  CAS  Google Scholar 

  32. M. Calcagnotto, D. Ponge, D. Raabe, Mater. Sci. Eng. A 527, 7832 (2010)

    Article  Google Scholar 

  33. F. Yaghoobi, R. Jamaati, H.J. Aval, Mater. Sci. Eng. A 788, 139584 (2020)

    Article  CAS  Google Scholar 

  34. Y. Furuya, S. Matsuoka, S. Shimakura, T. Hanamura, S. Torizuka, Scr. Mater. 52, 1163 (2005)

    Article  CAS  Google Scholar 

  35. K.K. Ray, D. Mondal, Acta Metall. Mater. 39, 2201 (1991)

    Article  CAS  Google Scholar 

  36. G. Krauss, Mater. Sci. Eng. A 273–275, 40 (1999)

    Article  Google Scholar 

  37. R. Song, D. Ponge, D. Raabe, Scr. Mater. 52, 1075 (2005)

    Article  CAS  Google Scholar 

  38. D. Zhang, M. Zhang, R. Lin, G. Liu, J. Li, Y. Feng, Mater. Sci. Eng. A 827, 142091 (2021)

    Article  CAS  Google Scholar 

  39. W.B. Morrison, ASM Trans. 59, 824 (1966)

    CAS  Google Scholar 

  40. C. Zheng, L. Li, W. Yang, Z. Sun, Mater. Sci. Eng. A 617, 31 (2014)

    Article  CAS  Google Scholar 

  41. T. Gladman, Mater. Sci. Technol. 15, 30 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 52071212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Fu or Aidang Shan.

Ethics declarations

Conflict of interest

The authors have agreed with the contents of the manuscript and declare that there are no conflicts of interest to disclose.

Additional information

Available online at http://springer.longhoe.net/journal/40195.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, S., Fu, L. et al. Achieving Fine-Grained Microstructure and Superior Mechanical Property in a Plain Low-Carbon Steel Using Heavy Cold Rolling Combined with Short-Time Heat Treatment. Acta Metall. Sin. (Engl. Lett.) 36, 1719–1734 (2023). https://doi.org/10.1007/s40195-023-01579-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-023-01579-8

Keywords

Navigation