Log in

Synergic Evolution of Microstructure-Texture-Stored Energy in Rare-Earth-Added Interstitial-Free Steels Undergoing Static Recrystallization

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Synergic evolution of microstructure-texture-stored energy in interstitial-free (IF) steels has been investigated to elaborate the effect of dissolved rare-earth (RE) elements on static recrystallization. Grain size, texture fraction and geometrically necessary dislocation distribution of IF steel samples annealed for different times were compared, suggesting that RE elements could postpone recrystallization nucleation but accelerate grain coarsening. The visco-plastic self-consistent model was primarily adopted and verified, then used to calculate the relative activities of different slip systems. It was proved that the compatible deformation of IF steels was very sensitive to dissolved RE elements, in particular the {110}6<111>2 slip systems became extremely inactive, leading to an α-fibre textures rich configuration of RE-IF steels. Although both IF steels have the same stored energy sequence of which γ-fibre takes precedence in nucleation followed by α-fibre, the nucleation rates of α/γ-fibres driven by the reduced stored energy slowed down in RE-IF steels. Further nucleation-path analyses revealed that shear bands within γ-fibre mainly sacrificed for grain nucleation of {111}<110> orientation, while α-fibre especially prior grain boundaries therein preferred supplying nucleation sites for {554}<225> grains, which accounting for the competitive growth of γ-fibre textures in RE-IF steels rather than being dominated by a single orientation. After grain growth, the major texture of Normal-IF steels had been transferred to {554}<225> from {111}<110>, while {554}<225> in RE-IF steels still inherited the orientation advantage and grew up rapidly, thus inducing the grain coarsening. As this work offers a significant understanding of RE microalloying effect on static recrystallization, it will provide references for alloy design and industrial application of IF steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Ghosh, S. Mula, Mater. Sci. Eng. A 646, 218 (2015)

    Article  CAS  Google Scholar 

  2. A. Haldar, R.K. Ray, Mater. Sci. Eng. A 391, 402 (2005)

    Article  Google Scholar 

  3. B.J. Duggan, Y.Y. Tse, G. Lam, M.A. Quadir, Mater. Manuf. Process. 26, 51 (2011)

    Article  CAS  Google Scholar 

  4. S. Ghosh, A.K. Singh, S. Mula, P. Chanda, V.V. Mahashabde, T.K. Roy, Mater. Sci. Eng. A 684, 22 (2017)

    Article  CAS  Google Scholar 

  5. Y. Nagataki, Y. Hosoya, ISIJ Int. 36, 451 (1996)

    Article  CAS  Google Scholar 

  6. S. Ghosh, S. Mula, Mater. Charact. 159, 110003 (2020)

    Article  CAS  Google Scholar 

  7. M. Oyarzábal, A. Martínez-de-Guerenu, I. Gutiérrez, Mater. Sci. Eng. A 485, 200 (2008)

    Article  Google Scholar 

  8. M. Sánchez-Araiza, S. Godet, P.J. Jacques, J.J. Jonas, Acta Mater. 54, 3085 (2006)

    Article  Google Scholar 

  9. A. Bodin, J. Sietsman, S. Van Der Zwaag, Metall. Mater. Trans. A 33, 1589 (2002)

    Article  Google Scholar 

  10. H. Chen, Z.B. He, L. Lu, J. Mater. Sci. Technol. 36, 37 (2020)

    Article  CAS  Google Scholar 

  11. J. Suharto, Y.G. Ko, Mater. Sci. Eng. A 558, 90 (2012)

    Article  CAS  Google Scholar 

  12. R. Saha, R.K. Ray, Scr. Mater. 57, 841 (2007)

    Article  CAS  Google Scholar 

  13. L. Zhang, Z. Chen, Y.H. Wang, G.Q. Ma, T.L. Huang, G.L. Wu, D.J. Jensen, Scr. Mater. 141, 111 (2017)

    Article  CAS  Google Scholar 

  14. S.L. **e, Z.B. Wang, K. Lu, J. Mater. Sci. Technol. 35, 460 (2019)

    Article  CAS  Google Scholar 

  15. A. De Paepe, J.C. Herman, P. Hekker, E.F.M. Jansen, Rev. Metall. 97, 905 (2000)

    Article  Google Scholar 

  16. P. Juntunen, P. Karjalainen, D. Raabe, G. Bolle, T. Kopio, Metall. Mater. Trans. A 32, 1989 (2001)

    Article  Google Scholar 

  17. W.C. Jeong, Metall. Mater. Trans. A 37, 3737 (2006)

    Article  Google Scholar 

  18. P. Ghosh, C. Ghosh, R.K. Ray, Acta Mater. 58, 3842 (2010)

    Article  CAS  Google Scholar 

  19. C.Y. Yang, P. Liu, Y.K. Luan, D.Z. Li, Y.Y. Li, Int. J. Fatigue 128, 105193 (2019)

    Article  CAS  Google Scholar 

  20. H.H. Liu, P.X. Fu, H.W. Liu, Y.F. Cao, C. Sun, N.Y. Du, D.Z. Li, J. Mater. Sci. Technol. 50, 245 (2020)

    Article  CAS  Google Scholar 

  21. D.Z. Li, P. Wang, X.Q. Chen, P.X. Fu, Y.K. Luan, X.Q. Hu, H.W. Liu, M.Y. Sun, Y. Chen, Y.F. Cao, L.G. Zheng, J.Z. Gao, Y.T. Zhou, L. Zhang, X.L. Ma, C.L. Dai, C.Y. Yang, Z.H. Jiang, Y. Liu, Y.Y. Li, Nat. Mater. 21, 1137 (2022)

    Article  CAS  Google Scholar 

  22. R.X. Yang, X. Cai, L.G. Zheng, X.Q. Hu, D.Z. Li, Acta Metall. Sin-Engl. Lett. (2022). https://doi.org/10.1007/s40195-022-01467-7

    Article  Google Scholar 

  23. J.C. Yang, C.Q. Yang, X.J. Liu, Z. Jian, Forg. Stamp. Technol. 39, 91 (2014)

    Google Scholar 

  24. H. Wang, Y.P. Bao, C.Y. Duan, L. Lu, Y. Liu, Q. Zhang, Materials 13, 1473 (2020)

    Article  CAS  Google Scholar 

  25. M. Mehdi, Y. He, E.J. Hilinski, A. Edrisy, Metall. Mater. Trans. A 50, 3343 (2019)

    Article  CAS  Google Scholar 

  26. R. Tuttle, Int. J. Metalcast. 6, 51 (2012)

    Article  CAS  Google Scholar 

  27. E.O. Hall (ed.), The Deformation and Aging of Mild Steel (1951)

  28. M. Mehdi, Y.L. He, E.J. Hilinski, L.A.I. Kestens, A. Edrisy, Steel Res. Int. 90, 1800582 (2019)

    Article  Google Scholar 

  29. J.T. Park, J.A. Szpunar, Acta Mater. 51, 3037 (2003)

    Article  CAS  Google Scholar 

  30. D. Dorner, S. Zaefferer, D. Raabe, Acta Mater. 55, 2519 (2007)

    Article  CAS  Google Scholar 

  31. H.J. Gao, Y.G. Huang, Scr. Mater. 48, 113 (2003)

    Article  CAS  Google Scholar 

  32. W. Oliferuk, M. Maj, Eur. J. Mech. A-Solids 28, 266 (2009)

    Article  Google Scholar 

  33. J.F. Nye, Acta Mater. 1, 153 (1953)

    Article  CAS  Google Scholar 

  34. W. Oliferuk, S.P. Gadaj, M.W. Grabski, Mater. Sci. Eng. A 70, 131 (1985)

    Article  CAS  Google Scholar 

  35. G.X. Hu, Z. Cai, Y.H. Rong (eds.), Fundamentals of Materials Science, 3rd edn. (Shanghai Jiaotong University Press, Shanghai, 2010), pp. 172–178

  36. W. Oliferuk, M. Maj, Eur. J. Mech. A-Solid 28, 266 (2009)

    Article  Google Scholar 

  37. W.M. Mao, P. Yang (ed.), Material Science Pricoples on Electrical Steels, 1st edn. (Higher Education Press, Bei**g, 2013), Chapter 3.2

  38. C. Tome, R. Lebensohn (ed.), Material Modeling with the Visco-Plastic Self-Consistent (VPSC) Approach-Theory and Practical Applications, 1st edn. ISBN: 9780128207130 (2023)

  39. Y. Rika, T. Ichiro, I. Tsuyoshi, S. Tadashi, ISIJ Int. 34, 70 (1994)

    Article  Google Scholar 

  40. S.S. Hazra, A.A. Gazder, E.V. Pereloma, Mater. Sci. Eng. A 524, 158 (2009)

    Article  Google Scholar 

  41. B.J. Duggan, M.Z. Quadir, Y.Y. Tse, K. Shen, G.L. Liu, Q.Z. Chen, Mater. Sci. Forum 558, 61 (2007)

    Article  Google Scholar 

  42. M. Mehdi, Y.L. He, E.J. Hilinski, L.A.I. Kestens, A. Edrisy, Acta Mater. 185, 540 (2020)

    Article  CAS  Google Scholar 

  43. A. Samet-Meziou, A.L. Etter, T. Baudin, R. Penelle, Scr. Mater. 53, 1001 (2005)

    Article  CAS  Google Scholar 

  44. S.H. Choi, Acta Mater. 51, 1775 (2003)

    Article  CAS  Google Scholar 

  45. Y.H. Guo, Z.D. Wang, L.Q. Wei, J. Mater. Eng. Perform. 23, 1214 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant Nos. 52101165, 52031013, 52071322 and U1708252, the Key Research Program of the Chinese Academy of Sciences, Grant No. ZDRW-CN-2021-3 and the supporting project, Grant No. KFG-2018107. The authors express their gratitude to C.N. Tomé (Material Science and Technology Division, Los Alamos National Laboratory) for providing the VPSC code to conduct the simulations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yikun Luan or Dianzhong Li.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://springer.longhoe.net/journal/40195.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Hou, X., Yang, C. et al. Synergic Evolution of Microstructure-Texture-Stored Energy in Rare-Earth-Added Interstitial-Free Steels Undergoing Static Recrystallization. Acta Metall. Sin. (Engl. Lett.) 36, 661–680 (2023). https://doi.org/10.1007/s40195-022-01492-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-022-01492-6

Keywords

Navigation