Log in

Effects of Cooling Paths on Through-Thickness Microstructure and Mechanical Properties of Heavy Gauge X80 Pipeline Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effects of various cooling paths on uniformity of through-thickness microstructure and mechanical properties of X80 pipeline steel of 22.0 mm in thickness were studied. The finite difference method was employed to calculate the temperature field during cooling. It was confirmed by the experimental result and temperature field calculation that the optimizing process was achieved by the ultra-fast cooling with medium cooling capacity (cooling rate of ~23 K/s) followed by ultimate cooling capacity (cooling rate of ~50 K/s). After optimization, the experimental steel displayed much uniform microstructure and the deviation of through-thickness hardness was controlled within 20 HV. In addition, the yield strength, tensile strength and elongation of the experimental steel were 621, 728 MPa and 21.5%, respectively, meeting the requirements of the API standard for X80 pipeline steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Sanchez-Mourino, R. Petrov, J.H. Bae, K. Kim, L.A.I. Kestens, Steel Res. Int. 82, 352 (2011)

    Article  Google Scholar 

  2. S.Y. Shin, Metall. Mater. Trans. A 44, 2613 (2013)

    Article  Google Scholar 

  3. S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J.H. Bae, K. Kim, Metall. Mater. Trans. A 41, 329 (2010)

    Article  Google Scholar 

  4. J.Q. Sun, H. Dai, Y.C. Zhang, Mater. Des. 32, 1612 (2011)

    Article  Google Scholar 

  5. M. Zhou, L.X. Du, X.H. Liu, Acta Metall. Sin. (Engl. Lett.) 23, 171 (2010)

    Google Scholar 

  6. W. Deng, X.H. Gao, X.M. Qin, X. Gao, D.W. Zhao, L.X. Du, Acta Metall. Sin. 46, 959 (2010). (in Chinese)

    Article  Google Scholar 

  7. F. Zhou, K.M. Wu, W. Zhou, M. Matrosov, J. Coast. Res. SI, 443 (2015)

    Article  Google Scholar 

  8. X.G. Zhou, Z.Y. Liu, S.Y. Song, D. Wu, G.D. Wang, J. Iron. Steel Res. Int. 21, 86 (2014)

    Article  Google Scholar 

  9. S.S. Mohapatra, S.V. Ravikumar, S.K. Pal, S. Chakraborty, Steel Res. Int. 84, 229 (2013)

    Article  Google Scholar 

  10. F. Zhou, K.M. Wu, C. Zhang, O. Isayev, P.D. Hodgson, Steel Res. Int. 87, 511 (2016)

    Article  Google Scholar 

  11. Y. Tian, Q. Li, Z.D. Wang, G.D. Wang, J. Mater. Eng. Perform. 24, 3307 (2015)

    Article  Google Scholar 

  12. X.L. Chen, G.D. Wang, Y. Tian, B.X. Wang, G. Yuan, Z.D. Wang, J. Iron. Steel Res. Int. 21, 481 (2014)

    Article  Google Scholar 

  13. S. Serajzadeh, Appl. Math. Model. 27, 861 (2003)

    Article  Google Scholar 

  14. S.X. Zhou, J. Mater. Process Tech. 134, 338 (2003)

    Article  Google Scholar 

  15. C.H. Moon, Y. Lee, Int. J. Heat Mass Trans. 55, 310 (2012)

    Article  Google Scholar 

  16. N. Sanchez, N. Ilic, M. Liebeherr, in Proceedings of the 9th International Pipeline Conference, (Calgary, Alberta, Canada) 24–28 Sep 2013

  17. W. Deng, X.H. Gao, X.M. Qin, D.W. Zhao, L.X. Du, G.D. Wang, Acta Metall. Sin. 46, 533 (2010). (in Chinese)

    Article  Google Scholar 

  18. L.Y. Zhao, Y. Wei, Y.Y. Shan, K. Yang, J. Iron. Steel Res. Int. 18, 312 (2011)

    Google Scholar 

  19. C.N. Li, G. Yuan, F.Q. Ji, D.S. Ren, G.D. Wang, Mater. Sci. Eng. A 665, 98 (2016)

    Article  Google Scholar 

  20. R. Song, D. Ponge, D. Raabe, Acta Mater. 53, 4881 (2005)

    Article  Google Scholar 

  21. N. Tsuji, S. Okuno, Y. Koizumi, Y. Minamino, Mater. Trans. 45, 2272 (2004)

    Article  Google Scholar 

  22. J. Kang, C.N. Li, G. Yuan, G.D. Wang, Mater. Lett. 175, 157 (2016)

    Article  Google Scholar 

  23. D.L. Bourell, Metall. Trans. A 14, 2487 (1983)

    Article  Google Scholar 

  24. D.L. Bourell, O.D. Sherby, Metall. Trans. A 14, 2563 (1983)

    Article  Google Scholar 

  25. M.S. Joo, D.W. Suh, J.H. Bae, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 546, 314 (2012)

    Article  Google Scholar 

  26. X.L. Yang, Y.B. Xu, X.D. Tan, D. Wu, Mater. Sci. Eng. A 641, 96 (2015)

    Article  Google Scholar 

  27. R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Madock, Mater. Sci. Eng. A 441, 1 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51234002) and the Fundamental Research Funds for the Central Universities (N130407001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Yuan.

Additional information

Available online at http://springer.longhoe.net/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XD., Li, CN., Yuan, G. et al. Effects of Cooling Paths on Through-Thickness Microstructure and Mechanical Properties of Heavy Gauge X80 Pipeline Steel. Acta Metall. Sin. (Engl. Lett.) 30, 483–492 (2017). https://doi.org/10.1007/s40195-017-0557-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0557-8

Keywords

Navigation