Log in

Evaluation of the role of process parameters of CMT welding and their statistical behaviour on the tensile properties of weld joint of novel aluminium hybrid composite

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The present study investigates the cold metal transfer (CMT) welding of a novel hybrid aluminium composite (AA6061-T6/ 2wt.% TiB2/ 0.5wt.% La2O3) fabricated via stir casting. It analyzes the effect of welding parameters, i.e. current, travel speed, and gas flow rate, on the tensile strength of the composite’s weld joint using response surface methodology (RSM). Also, a dedicated study of the microstructure and mechanical properties of weld joints at optimal parameters has been conducted. Results indicate that current significantly affects tensile strength, followed by travel speed and gas flow rate. The optimal parameters identified are 142 A current, 9 mm/s travel speed, and 14 L/min gas flow rate for maximizing tensile strength. Welds at optimal parameters displayed no solidification cracking and minimum porosity. The microstructural analysis confirmed the presence of reinforcements in the composite with the formation of finer grains in the fusion zone (FZ) compared to the heat-affected zone (HAZ). Microhardness tests showed the highest values in the FZ and the lowest in the HAZ, while tensile tests showed reduced strength at HAZ compared to the FZ and base composite, with dominant brittle behaviour. Post-weld heat treatment improved ductility, as indicated by deeper dimples and tear ridges with fewer cleavage facets in fracture analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Zhou MY et al (2020) Progress in research on hybrid metal matrix composites. J Alloy Compd 838:155274. https://doi.org/10.1016/j.jallcom.2020.155274

    Article  CAS  Google Scholar 

  2. Singh B, Kumar I, Saxena KK, Mohammed AK, Khan MI et al (2023) A future prospects and current scenario of aluminium metal matrix composites characteristics. Alex Eng J 76:1–17. https://doi.org/10.1016/j.aej.2023.06.028

    Article  Google Scholar 

  3. Aniruddha MV, Aravindan S, Singh IP (2015) Nano and hybrid aluminium based metal matrix composites: an overview. Manuf Rev 2:15. https://doi.org/10.1051/mfreview/2015018

    Article  CAS  Google Scholar 

  4. Suresh S et al (2011) Aluminium-titanium diboride (Al-TiB2) metal matrix composites: challenges and opportunities. Proc Eng 38:89–97. https://doi.org/10.1016/j.proeng.2012.06.013

    Article  CAS  Google Scholar 

  5. Mohanavel V, Ravichandran M, Anandakrishnan V, Pramanik A et al (2021) Mechanical properties of titanium diboride particles reinforced aluminium alloy matrix composites: a comprehensive review. Adv Mater Sci Eng 18:7602160. https://doi.org/10.1155/2021/7602160

    Article  CAS  Google Scholar 

  6. Sharma VK, Kumar V, Joshi RS (2019) Investigation of rare earth particulate on tribological and mechanical properties of Al-6061 alloy composites for aerospace application. J Market Res 8(4):3504–3516. https://doi.org/10.1016/j.jmrt.2019.06.025

    Article  CAS  Google Scholar 

  7. Arora G, Sharma S (2021) Influence of rare earth addition on the properties of AA6351 hybrid composites. J Eng Res 9. https://doi.org/10.36909/jer.7901

  8. Sahu M.K, Sahu R.K (2018) Fabrication of aluminum matrix composites by stir casting technique and stirring process parameters optimization. InTech. https://doi.org/10.5772/intechopen.73485

  9. Liu K, Jiang X, Chen S, Yuan T, Yan Z (2022) Effect of SiC addition on microstructure and properties of Al-Mg alloy fabricated by powder and wire cold metal transfer process. J Market Res 17:310–319. https://doi.org/10.1016/j.jmrt.2022.01.014

    Article  CAS  Google Scholar 

  10. Ellis M (2007) Joining of Al-based metal matrix composites - a review. Mater Manuf Processes 11:45–66. https://doi.org/10.1080/10426919608947460

    Article  Google Scholar 

  11. Garcia R, Lopez VH, Bedolla E et al (2003) A comparative study of the MIG welding of AI/TiC composites using direct and indirect electric arc processes. J Mater Sci 38:2771–2779. https://doi.org/10.1023/A:1024471610718

    Article  CAS  Google Scholar 

  12. Peng K et al (2011) Mechanical properties and wear resistance of aluminum composite welded by electron beam. Trans Nonferrous Metals Soc China 21(9):1925–1931. https://doi.org/10.1016/S1003-6326(11)60951-5

    Article  CAS  Google Scholar 

  13. Ureña A et al (2000) Influence of interface reactions on fracture mechanisms in TIG arc-welded aluminium matrix composites. Compos Sci Technol 60(4):613–622. https://doi.org/10.1016/S0266-3538(99)00168-2

    Article  Google Scholar 

  14. Yue TM, Xu JH, Man HC (1997) Pulsed Nd-YAG laser welding of a SiC particulate reinforced aluminium alloy composite. Appl Compos Mater 4:53–64. https://doi.org/10.1023/A:1008826513679

    Article  CAS  Google Scholar 

  15. Kalaiselvan K, Dinaharan I, Murugan N (2020) Routes for the joining of metal matrix composite materials. Encyclopaedia Mater: Compos. https://doi.org/10.1016/B978-0-12-803581-8.11899-5

  16. Devanathan C, Raja DE, Sonarn T, Ivanov M (2024) Effect of friction coefficient in friction stir welding of B4C reinforced AA5083 metal matrix composites and use of fuzzy clustering technique for weld strength prediction. Adv Mater Sci Eng 1687–8434 https://doi.org/10.1155/2024/9880686

  17. Ali KSA, Mohanavel V, Vendan SA et al (2021) Mechanical and microstructural characterization of friction stir welded SiC and B4C reinforced aluminium alloy AA6061 metal matrix composites. Materials 14(11):3110. https://doi.org/10.3390/ma14113110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abbasi M, Givi M, Ramazani A (2019) Friction stir vibration processing: a new method to improve the microstructure and mechanical properties of Al5052/SiC surface nanocomposite layer. Int J Adv Manuf Technol 100:1463–1473. https://doi.org/10.1007/s00170-018-2783-2

    Article  Google Scholar 

  19. Barati M, Abbasi M, Abedini M (2019) The effects of friction stir processing and friction stir vibration processing on mechanical, wear and corrosion characteristics of Al6061/SiO2 surface composite. J Manuf Process 45:491–497. https://doi.org/10.1016/j.jmapro.2019.07.034

    Article  Google Scholar 

  20. Prater T (2014) Friction stir welding of metal matrix composites for use in aerospace structures. Acta Astronaut 93:366–373. https://doi.org/10.1016/j.actaastro.2013.07.023

    Article  CAS  Google Scholar 

  21. Marie AF, Simar A (2016) A review about friction stir welding of metal matrix composites. Mater Charact 120:1–17. https://doi.org/10.1016/j.matchar.2016.07.010

    Article  CAS  Google Scholar 

  22. Selvi S et al (2018) Cold metal transfer (CMT) technology - an overview. Defence Technol 14(1):28–44. https://doi.org/10.1016/j.dt.2017.08.002

    Article  Google Scholar 

  23. Jicai F et al (2009) The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding. Mater Des 30(5):1850–1852. https://doi.org/10.1016/j.matdes.2008.07.015.4

    Article  Google Scholar 

  24. Işıtan A, Aytekin S, Onar V (2024) Enhancing the microstructure and mechanical properties of cast aluminium matrix composites through nano-Al2O3 reinforcement via CMT and PMC welding. Inter Metalcast. https://doi.org/10.1007/s40962-023-01234-z

    Article  Google Scholar 

  25. Pickin CG, Young K (2006) Evaluation of cold metal transfer (CMT) process for welding aluminium alloy. Sci Technol Weld Join. https://doi.org/10.1179/174329306X120886

  26. Karimi MR, Wang SH, Jelovica J (2022) Taguchi-based experimental investigation into weld cladding of Ni-WC MMC overlays by CMT process. Int J Adv Manuf Technol 122:2433–2461. https://doi.org/10.1007/s00170-022-09816-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kesarwani S, Niranjan M, Singh V (2020) To study the effect of different reinforcements on various parameters in aluminium matrix composite during CNC turning. Compos Commun 22:100504. https://doi.org/10.1016/j.coco.2020.100504

    Article  Google Scholar 

  28. Singh V, Niranjan MS, Murtaza Q (2024) Effect of Al-Si and Al-Mg filler wires on microstructure and mechanical properties of bead-on-plate weld on AA6061-T6 using CMT welding. Proc Inst Mech Eng Part E: J Process Mech Eng. https://doi.org/10.1177/09544089241241046

  29. Verma RP, Pandey K, Sharma Y (2014) Effect of ER4043 and ER5356 filler wire on mechanical properties and microstructure of dissimilar aluminium alloys, 5083-O and 6061–T6 joint, welded by the metal inert gas welding. Proc Inst Mech Eng B: J Eng Manuf 229:1021–1028. https://doi.org/10.1177/0954405414535771

    Article  CAS  Google Scholar 

  30. Elrefaey A, Ross NG (2015) Microstructure and mechanical properties of cold metal transfer welding similar and dissimilar aluminum alloys. Acta Metallurgica Sinica (English Letters) 28:715–724. https://doi.org/10.1007/s40195-015-0252-6

    Article  CAS  Google Scholar 

  31. Huan P, Wang X, Zhang J (2020) Effect of wire composition on microstructure and properties of 6063 aluminium alloy hybrid synchronous pulse CMT welded joints. Mater Sci Eng A 790:139713. https://doi.org/10.1016/j.msea.2020.139713

    Article  CAS  Google Scholar 

  32. Al-Sabur R, Slobodyan M, Chhalotre S, Verma M (2020) Contact resistance prediction of zirconium joints welded by small scale resistance spot welding using ANN and RSM models. Mater Today: Proc 47:5907–5911. https://doi.org/10.1016/j.matpr.2021.04.431

    Article  CAS  Google Scholar 

  33. Al-Sabur R (2020) Tensile strength prediction of aluminium alloys welded by FSW using response surface methodology – comparative review. Mater Today: Proc 45:4504–4510. https://doi.org/10.1016/j.matpr.2020.12.1001

    Article  CAS  Google Scholar 

  34. Sarabia L, Ortiz M (2010) Response surface methodology. Comprehensive Chemometrics: Chem Biochem Data Anal 1. https://doi.org/10.1016/B978-044452701-1.00083-1

  35. Alam MA et al (2020) Modeling, optimization and performance evaluation of TiC/graphite reinforced Al 7075 hybrid composites using response surface methodology. Materials 14(16):4703. https://doi.org/10.3390/ma14164703

    Article  CAS  Google Scholar 

  36. Karimi MR, Wang SH, Jelovica J (2023) Characterization of cold metal transfer and conventional short-circuit gas metal arc welding processes for depositing tungsten carbide-reinforced metal matrix composite overlays. Int J Adv Manuf Technol 128:2551–2570. https://doi.org/10.1007/s00170-023-11955-4

    Article  Google Scholar 

  37. Anand R, Padmanabhan R (2023) Influence of friction stir welding process parameters and statistical behaviour of the novel interlock aluminium alloys joint with SiCp reinforcement.". CIRP J Manuf Sci Technol 45:260–270. https://doi.org/10.1016/j.cirpj.2023.07.002

    Article  Google Scholar 

  38. Zhiqiang Z et al (2023) Optimization of porosity and surface roughness of CMT-P wire arc additive manufacturing of AA2024 using response surface methodology and NSGA-II. J Market Res 24:6923–6941. https://doi.org/10.1016/j.jmrt.2023.04.259

    Article  CAS  Google Scholar 

  39. Koli Y, Yuvaraj N, Vipin AS (2020) Multi-response mathematical modeling for prediction of weld bead geometry of AA6061-T6 using response surface methodology. Trans Indian Inst Met 73:645–666. https://doi.org/10.1007/s12666-020-01883-2

    Article  CAS  Google Scholar 

  40. Wang B, Xue S, Ma C, Wang J, Lin Z (2017) Effects of porosity, heat input and post-weld heat treatment on the microstructure and mechanical properties of TIG welded joints of AA6082-T6. Metals 7(11):463. https://doi.org/10.3390/met7110463

    Article  CAS  Google Scholar 

  41. Wang L et al (2017) Effects of welding parameters on microstructures and mechanical properties of disk laser beam welded 2A14-T6 aluminium alloy joint. J Manuf Process 31:240–246. https://doi.org/10.1016/j.jmapro.2017.11.017

    Article  Google Scholar 

  42. Zhao Y, Chen F, Cao S, Chen C, **e R (2022) Effect of CMT welding heat input on microstructure and properties of 2A14 aluminum alloy joint. Metals 12(12):2100. https://doi.org/10.3390/met12122100

    Article  CAS  Google Scholar 

  43. Tiryakioğlu M (2020) The effect of hydrogen on pore formation in aluminium alloy castings: myth versus reality. Metals 10(3):368. https://doi.org/10.3390/met10030368

    Article  CAS  Google Scholar 

  44. Tiryakioğlu M (2020) Solubility of hydrogen in liquid aluminium: reanalysis of available data. Int J Cast Met Res. https://doi.org/10.1080/13640461.2020.1718337

    Article  Google Scholar 

  45. Gupta SK et al (2018) Effect of welding speed on weld bead geometry and percentage dilution in gas metal arc welding of SS409L. Mater Today: Proc 18:5032–5039. https://doi.org/10.1016/j.matpr.2019.07.497

    Article  CAS  Google Scholar 

  46. Legait P (2006) Formation and distribution of porosity in Al-Si welds. Worcester Polytechnic Institute (PhD Thesis)

  47. Mvola B, Kah P (2017) Effects of shielding gas control: welded joint properties in GMAW process optimization. Int J Adv Manuf Technol 88:2369–2387. https://doi.org/10.1007/s00170-016-8936-2

    Article  Google Scholar 

  48. Schempp P, Rethmeier M (2015) Understanding grain refinement in aluminium welding. Weld World 59:767–784. https://doi.org/10.1007/s40194-015-0251-2

    Article  Google Scholar 

  49. Kumar NP et al (2016) Investigations on the parametric effects of cold metal transfer process on the microstructural aspects in AA6061. J Alloy Compd 658:255–264. https://doi.org/10.1016/j.jallcom.2015.10.166

    Article  CAS  Google Scholar 

  50. Schaffer P et al (2006) Segregation of particles and its influence on the morphology of the eutectic silicon phase in Al-7 wt.% Si alloys. Scripta Mater 54. https://doi.org/10.1016/j.scriptamat.2005.10.016

  51. Chidambaram A et al (2019) Microstructure and mechanical properties of AA6061–5wt. %TiB2 in-situ metal matrix composite subjected to equal channel angular pressing. Mater Sci Eng: A 759762–769. https://doi.org/10.1016/j.msea.2019.05.068

  52. Sun C, Lu N, Liu H et al (2020) Effect of necklace-type distribution of SiC particles on dry sliding wear behavior of As-cast AZ91D/SiCp composites. Crystals 10(4):296. https://doi.org/10.3390/cryst10040296

    Article  CAS  Google Scholar 

  53. Shang J et al (2013) Microstructure characteristics and properties of Mg/Al dissimilar metals made by cold metal transfer welding with ER4043 filler metal. Rare Metal Mater Eng 42(7):1337–1341. https://doi.org/10.1016/S1875-5372(13)60081-8

    Article  CAS  Google Scholar 

  54. Lakshminarayanan AK, Balasubramanian V, Elangovan K (2009) Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. Int J Adv Manuf Technol 40:286–296. https://doi.org/10.1007/s00170-007-1325-0

    Article  Google Scholar 

  55. Wei N, Cui HZ, Wu J et al (2015) Effects of forming conditions and TiC–TiB2 contents on the microstructures of self-propagating high-temperature synthesized NiAl–TiC–TiB2 composites. Acta Metall Sin (Engl Lett) 28:39–47. https://doi.org/10.1007/s40195-014-0163-y

    Article  CAS  Google Scholar 

  56. Hansen N (2004) Hall-Petch relation and boundary strengthening. Scripta Mater 51:801–806. https://doi.org/10.1016/j.scriptamat.2004.06.002

    Article  CAS  Google Scholar 

  57. Hakem M, Lebaili S, Mathieu S et al (2019) Effect of microstructure and precipitation phenomena on the mechanical behavior of AA6061-T6 aluminium alloy weld. Int J Adv Manuf Technol 102:2907–2918. https://doi.org/10.1007/s00170-019-03401-1

    Article  Google Scholar 

  58. Tingting Z et al (2020) Effects of rare earth elements on the microstructure and wear properties of TiB2 reinforced aluminium matrix composite coatings: experiments and first principles calculations. Appl Surf Sci 530:147051. https://doi.org/10.1016/j.apsusc.2020.147051

    Article  CAS  Google Scholar 

  59. Venkatesh VSS et al (2023) Processing and evaluation of nano SiC reinforced aluminium composite synthesized through ultrasonically assisted stir casting process. J Market Res 24:7394–7408. https://doi.org/10.1016/j.jmrt.2023.05.030

    Article  CAS  Google Scholar 

  60. Pazhouhanfar Y, Eghbali B (2018) Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process. Mater Sci Eng A 710:172–180. https://doi.org/10.1016/j.msea.2017.10.087

    Article  CAS  Google Scholar 

  61. **g X et al (2012) Behavior of CeO2 additive in in-situ TiB2 particles reinforced 2014 Al alloy composite. Trans Nonferrous Metals Soc China 22(5):1012–1017. https://doi.org/10.1016/S1003-6326(11)61277-6

    Article  CAS  Google Scholar 

  62. Srivatsan TS, Prakash A (1994) The quasi-static fracture behavior of an aluminium alloy metal-matrix composite. Compos Sci Technol 54(3):307–315. https://doi.org/10.1016/0266-3538(95)00057-7

    Article  Google Scholar 

  63. Wang J et al (2022) Effect of preheat & post-weld heat treatment on the microstructure and mechanical properties of 6061–T6 aluminium alloy welded sheets. Mater Sci Eng, A 841:143081. https://doi.org/10.1016/j.msea.2022.143081

    Article  CAS  Google Scholar 

  64. Ahmad R, Bakar MA (2011) Effect of a post-weld heat treatment on the mechanical and microstructure properties of AA6061 joints welded by the gas metal arc welding cold metal transfer method. Mater Des 32(10):5120–5126. https://doi.org/10.1016/j.matdes.2011.06.007

    Article  CAS  Google Scholar 

  65. Rajendran C et al (2024) Enhancing tensile properties of pulsed CMT–MIG welded high strength AA2014-T6 alloy joints: effect of post weld heat treatment. Int J Lightweight Mater Manuf 7(2):344–352. https://doi.org/10.1016/j.ijlmm.2023.10.004

    Article  CAS  Google Scholar 

  66. Li X, Yan H, Wang ZW et al (2019) Effect of heat treatment on the microstructure and mechanical properties of a composite made of Al-Si-Cu-Mg aluminium alloy reinforced with SiC particles. Metals 9(11):1205. https://doi.org/10.3390/met9111205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Vibhu Singh: conceptualization, methodology, investigation, validation, formal analysis, writing—original draft, writing—review and editing; M.S. Niranjan: supervision, writing—review and editing, validation; Qasim Murtaza: supervision, writing—review and editing, validation.

Corresponding author

Correspondence to Vibhu Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XV - Design, Analysis, and Fabrication of Welded Structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Niranjan, M.S. & Murtaza, Q. Evaluation of the role of process parameters of CMT welding and their statistical behaviour on the tensile properties of weld joint of novel aluminium hybrid composite. Weld World (2024). https://doi.org/10.1007/s40194-024-01805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40194-024-01805-6

Keywords

Navigation