Log in

Solidification of plasma TIG-welded N-alloyed austenitic CrMnNi stainless steel

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

In this study, the type of solidification of an austenitic stainless steel during plasma tungsten inert gas (TIG) welding was investigated. The stainless steel Fe-17Cr-7Mn-4Ni-(0.12–0.19)N, concentration in wt.%, was studied in hot-rolled condition with a δ-ferrite fraction less than 5 vol.%. The investigated steel could be successfully welded without filler metal. The steel had an increased Mn content and a lowered Ni content to reduce alloying costs. To verify the solidification type after welding, microstructural investigations are performed using light optical microscopy, scanning electron microscopy, and hardness measurements. Moreover, the microstructure was characterized by scanning electron microscope using electron backscatter diffraction (EBSD). Based on the EBSD measurements, it was possible to elucidate the solidification process. In the present alloy system, the primary solidification of the weld seam according to Scheil-Gulliver model was calculated, taking the fast diffusing N into account. The Scheil-Gulliver model predicted primary ferritic (body-centered cubic, BCC) solidification. After solidification of approx. 84% solid phase, the austenite (face-centered cubic, FCC) is formed via eutectic reaction and the residual melt solidified as austenite. The theoretically determined solidification type agrees with the experimentally observed microstructure. In addition, susceptibility to solidification cracking was investigated, for which no evidence was found in the studied microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Taiwade RV, Patre SJ, Patil AP (2011) Studies on welding and sensitization of chrome-manganese austenitic stainless steel. Trans Indian Inst Met 64:513–518. https://doi.org/10.1007/s12666-011-0077-6

    Article  CAS  Google Scholar 

  2. Chuaiphan W, Srijaroenpramong L (2020) Optimization of TIG welding parameter in dissimilar joints of low nickel stainless steel AISI 205 and AISI 216. J Manuf Process 58:163–178. https://doi.org/10.1016/j.jmapro.2020.07.052

    Article  Google Scholar 

  3. Awe W 2010 Böhler Welding Wissenswertes für den Schweisser, Ausgabe 09. Handbuch der Böhler Schweißtechnik Austria GmbH, Kapfenberg/ Austria

  4. Scherer R, Riedrich G, Hougardy H 1941 Welding rod

  5. Shankar V, Gill TPS, Mannan SL, Sundarlsan S (2003) Solidification cracking in austenitic stainless steel welds. Sadhana - Acad Proc Eng Sci 28:359–382. https://doi.org/10.1007/BF02706438

    Article  CAS  Google Scholar 

  6. Folkhard E (1984) Metallurgie der Schweißung nichtrostender Stähle, 1st edn. Springer-Verlag, Wien

    Book  Google Scholar 

  7. DeLong WT (1974) Ferrite in austenitic stainless steel weld metal. Indian Weld J 7:273s–286s

    Google Scholar 

  8. Espy RH (1982) Weldability of nitrogen-strengthened stainless steels. Weld J (Miami, Fla) 61:149s–156s

    Google Scholar 

  9. Bermejo MAV (2012) Predictive and measurement methods for delta ferrite determination in stainless steels. Weld J 91:113s–121s

    Google Scholar 

  10. Siewert TA, McCowan CN, Olson DL (1988) Ferrite number prediction to 100 FN in stainless steel weld metal. Weld J (Miami, Fla) 67:289s–298s

    Google Scholar 

  11. Kotecki DJ, Siewert TA (1992) WRC-1992 Constitution diagram for stainless steel weld metals : a modification of the WRC-1988 diagram. Weld J 71:171

    Google Scholar 

  12. Mateša B, Samardžić I, Dunder M (2012) The influence of the heat treatment on delta ferrite transformation in austenitic stainless steel welds. Metalurgija 51:229–232

    Google Scholar 

  13. Lippold JC, Kotecki DJ (2005) Welding metallurgy and weldability of stainless steels, 1st edn. Wiley-Interscience, New Jersey

    Google Scholar 

  14. Suutala N, Takalo T, Moisio T (1979) The relationship between solidification and microstructure in austenitic and austenitic-ferritic stainless steel welds. Metall Trans A 10:512–514. https://doi.org/10.1007/BF02697081

    Article  Google Scholar 

  15. Kujanpää V, Suutala N, Takalo T, Moisio T (1979) Correlation between solidification cracking and microstructure in austenitic and austenitic-ferritic stainless steel welds. Weld Res Int 9:55–75

    Google Scholar 

  16. Woo I, Kikuchi Y (2002) Weldability of high nitrogen stainless steel. ISIJ Int 42:1334–1343. https://doi.org/10.2355/isi**ternational.42.1334

    Article  CAS  Google Scholar 

  17. Takalo T, Suutala N, Moisio T (1979) Austenitic solidification mode in austenitic stainless steel welds. Metall Trans A 10A:1173–1181. https://doi.org/10.1007/BF02661201

    Article  CAS  Google Scholar 

  18. Saluja R, Moeed KM (2012) The emphasis of phase transformations and alloying constituents on hot cracking susceptibility of type 304L and 316L stainless steel welds. Int J Eng Sci Technol 4:2206–2216

    Google Scholar 

  19. Kyriankongonas AP, Papazoglou VJ (2009) 3D numerical model of austenitic stainless steel 316L multipass butt welding and comparison with experimental results. In: Guedes Soares C, Das PK (eds) Analysis and design of marine structures, 1st Editio. London, pp 395–402

  20. Bhadeshia HKDH, David SA, Vitek JM (1991) Solidification sequences in stainless steel dissimilar alloy welds. Mater Sci Technol (United Kingdom) 7:50–61. https://doi.org/10.1179/mst.1991.7.1.50

    Article  CAS  Google Scholar 

  21. Kemp M, van Bennekom A, Robinson FPA (1995) Evaluation of the corrosion and mechanical properties of a range of experimental CrMn stainless steels. Mater Sci Eng A 199:183–194. https://doi.org/10.1016/0921-5093(94)09694-5

    Article  Google Scholar 

  22. Quitzke C, Schröder C, Ullrich C et al (2021) Evaluation of strain-induced martensite formation and mechanical properties in N-alloyed austenitic stainless steels by in situ tensile tests. Mater Sci Eng A 808:140930. https://doi.org/10.1016/j.msea.2021.140930

    Article  CAS  Google Scholar 

  23. Weman K 2012 Introduction to welding. In: Weman K (ed) Welding processes handbook, 2nd ed. Oxford, pp 1–12

  24. DIN-EN-1011–1 2009 Schweißen - Empfehlungen zum Schweißen metallischer Werkstoffe - Teil 1: Allgemeine Anleitungen für das Lichtbogenschweißen. Berlin

  25. Rodrigues A, Loureiro A (2004) Effect of cooling rate on the microstructure and hardness of austenitic stainless steel welds. Mater Sci Forum 455–456:312–316. https://doi.org/10.4028/www.scientific.net/msf.455-456.312

    Article  Google Scholar 

  26. Wegrzyn T (1992) Delta ferrite in stainless steel weld metals. Weld Int 6:690–694. https://doi.org/10.1080/09507119209548267

    Article  Google Scholar 

  27. Jatimurti W, Abdillah FA, Kurniawan BA, Rochiem R 2018 Effect of current and travel speed variation of TIG welding on microstructure and hardness of stainless steel SS 316L. In: AIP Conference Proceedings. American Institute of Physics, pp 020074–1–020074–8

  28. Ibrahim IR, Khedr M, Mahmoud TS et al (2021) Study on the mechanical performance of dissimilar butt joints between low Ni medium-Mn and Ni-Cr austenitic stainless steels processed by gas tungsten arc welding. Metals (Basel) 11:1439. https://doi.org/10.3390/met11091439

    Article  CAS  Google Scholar 

  29. Rao KP (1990) Effect of weld cooling rate on delta-ferrite content of austenitic weld metals. J Mater Sci Lett 9:675–677. https://doi.org/10.1007/BF00721800

    Article  CAS  Google Scholar 

  30. Kou S (2003) Welding Metallurgy, 2nd edn. John Wiley & Sons, New Jersey

    Google Scholar 

  31. Durgutlu A (2004) Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel. Mater Des 25:19–23. https://doi.org/10.1016/j.matdes.2003.07.004

    Article  CAS  Google Scholar 

  32. Vashishtha H, Taiwade RV, Sharma S, Patil AP (2017) Effect of welding processes on microstructural and mechanical properties of dissimilar weldments between conventional austenitic and high nitrogen austenitic stainless steels. J Manuf Process 25:49–59. https://doi.org/10.1016/j.jmapro.2016.10.008

    Article  Google Scholar 

  33. Chuaiphan W, Srijaroenpramong L (2020) Heat input and shielding gas effects on the microstructure, mechanical properties and pitting corrosion of alternative low cost stainless steel grade 202. Results Mater 7:100111. https://doi.org/10.1016/j.rinma.2020.100111

    Article  Google Scholar 

  34. Vashishtha H, Taiwade RV, Khatirkar RK et al (2014) Welding behaviour of low nickel chrome-manganese stainless steel. ISIJ Int 54:1361–1367. https://doi.org/10.2355/isi**ternational.54.1361

    Article  CAS  Google Scholar 

  35. Mirshekari GR, Tavakoli E, Atapour M, Sadeghian B (2014) Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel. Mater Des 55:905–911. https://doi.org/10.1016/j.matdes.2013.10.064

    Article  CAS  Google Scholar 

  36. Kou S (2021) Predicting susceptibility to solidification cracking and liquation cracking by CALPHAD. Metals (Basel) 11:1442. https://doi.org/10.3390/met11091442

    Article  CAS  Google Scholar 

  37. Soysal T (2021) Effect of solidification models on predicting susceptibility of carbon steels to solidification cracking. Weld World 65:1943–1954. https://doi.org/10.1007/s40194-021-01132-0

    Article  CAS  Google Scholar 

  38. Clyne TW, Kurz W 1981 Solute redistribution during solidification with rapid solid state diffusion. Metall Trans A, Phys Metall Mater Sci 12 A:965–971. https://doi.org/10.1007/BF02643477

  39. Bilmes P, Gonzalez A, Llorente C, Solari M (1996) Effect of δ ferrite solidification morphology of austenitic stainless steel weld metal on properties of welded joints. Weld Int 10:797–808. https://doi.org/10.1080/09507119609549091

    Article  Google Scholar 

  40. Suutala N, Takalo T, Moisio T 1980 Ferritic-austenitic solidification mode in austenitic stainless steel welds. Metall Trans A 11A:717–725. https://doi.org/10.31399/asm.tb.ssde.t52310069

  41. Lippold JC, Savage WF 1980 Solidification of austenitic stainless steel weldments - 2. the effect of alloy composition on ferrite morphology. Weld J (Miami, Fla) 59:48-s-58-s

  42. Lippold JC, Savage WF 1979 Solidification of Austenitic Stainless Steel Weldments : Part I — A Proposed Mechanism The distribution and morphology of delta ferrite is dependent. Weld Res Suppl 362s-374s

  43. Hunter A, Ferry M (2002) Phase formation during solidification of AISI 304 austenitic stainless steel. Scr Mater 46:253–258. https://doi.org/10.1016/S1359-6462(01)01215-5

    Article  CAS  Google Scholar 

  44. Mizukami H, Suzuki T, Umeda T, Kurz W (1993) Initial stage of rapid solidification of 18–8 stainless steel. Mater Sci Eng A 173:361–364. https://doi.org/10.1016/0921-5093(93)90245-A

    Article  Google Scholar 

  45. Brooks JA, Thompson AW (1991) Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int Mater Rev 36:16–44

    Article  CAS  Google Scholar 

  46. Han C, Liu Q, Cai Z et al (2022) Effect of solidification segregation on microstructure and mechanical properties of a Ni-Cr-Mo-V steel weld metal. Metall Mater Trans A Phys Metall Mater Sci 53:1394–1406. https://doi.org/10.1007/s11661-022-06600-w

    Article  CAS  Google Scholar 

  47. Aström H, Loberg B, Bengtsson B, Easterling KE (1976) Hot cracking and micro-segregation in 18–1 0 stainless steel welds. Met Sci 10:225–234. https://doi.org/10.1179/030634576790432380

    Article  Google Scholar 

  48. Shankar V, Gill TPS, Mannan SL, Rodriguez P 1991 A review of hot cracking in austenitic stainless steel weldments

  49. Yu P, Thompson KJ, McCarthy J, Kou S 2018 Microstructure evolution and solidification cracking in austenitic stainless steel welds. Weld J 97:301S-314S. https://doi.org/10.29391/2018.97.026

  50. Liang SM, Yu P, Zhang F, Kou S (2021) Back diffusion resisting solidification cracking in austenitic stainless steels. Sci Technol Weld Join 26:606–613. https://doi.org/10.1080/13621718.2021.1984164

    Article  CAS  Google Scholar 

  51. Borland J, Younger R (1960) Some aspects of cracking in welded Cr-Ni austenitic steels. Br Weld J 7:22–59

    CAS  Google Scholar 

  52. Kujanpää VP (1985) Effects of steel type and impurities in solidification cracking of austenitic stainless steel welds. Met Constr 17:40R-46R

    Google Scholar 

  53. Liu K, Yu P, Kou S 2020 Solidification cracking susceptibility of stainless steels: new test and explanation. Weld J 99:255s-270s. https://doi.org/10.29391/2020.99.024

  54. Matsuda F, Nakagawa H, Uehara T et al (1979) A new explanation for role of delta-ferrite improving weld solidification crack susceptibility in austenitic stainless steel. Trans JWRI 8:105–112

    CAS  Google Scholar 

  55. Hull FC (1967) Effect of delta ferrite on the hot cracking of stainless steel. Weld J 46:399

    Google Scholar 

Download references

Acknowledgements

Thanks are due to project partner H. Butting GmbH & Co. KG (Knesebeck, Germany) for welding of the steels. Thanks are due to Dr.-Ing. M. Hauser (Institute of Iron and Steel Technology, TU Bergakademie Freiberg) for the support and calculation with Thermo-Calc software. Thanks are also due to Prof. Dr.-Ing. U. Prahl and Dipl.-Ing. F. Hoffmann (Institute of Metal Forming, TU Bergakademie Freiberg) for forging and hot rolling the steels.

Funding

The investigations were carried out in the TP T5 transfer project as part of the Collaborative Research Center 799 (project number 54473466). This work is financially supported by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Christina Schröder; formal analysis and investigation: Caroline Quitzke; visualization: Caroline Quitzke; writing—original draft: Caroline Quitzke; writing—review and editing: Christina Schröder, Marcel Mandel, Lutz Krüger, Olena Volkova, Marco Wendler; validation: Caroline Quitzke, Christina Schröder, Marcel Mandel, Lutz Krüger, Olena Volkova, Marco Wendler; supervision: Marco Wendler; project administration: Lutz Krüger, Olena Volkova, Marco Wendler.

Corresponding author

Correspondence to C. Quitzke.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XV - Design, Analysis, and Fabrication of Welded Structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quitzke, C., Schröder, C., Mandel, M. et al. Solidification of plasma TIG-welded N-alloyed austenitic CrMnNi stainless steel. Weld World 66, 2217–2229 (2022). https://doi.org/10.1007/s40194-022-01353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-022-01353-x

Keywords

Navigation