Log in

Welding parameter selection and short fatigue crack growth of dissimilar aluminum alloy friction stir welded joint

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The welding process parameters of dissimilar 2024-T4 and 7075-T6 aluminum alloy friction stir welded (FSWy) joints are selected by the metallographic microstructure, the mechanical properties, and the hardness distribution. The joints with rotational speed of 900 rpm and advancing speed of 100 mm/min that have the highest tensile strength are used to carry out the experimental fatigue research. The short crack growth behavior of dissimilar FSW joints is analyzed through the replica technique. The stage of the crack initiation and stable growth accounts for about 60~80% of total fatigue life. The short crack grows rapidly once it reaches the crack size of approximately 350~450 μm. The cracks are prone to initiate at the defects of subsurface in the weld nugget zone and propagate in a quasi-cleavage fracture mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Q :

Heat input per unit length

α :

Heat input efficiency

q :

Heat input

v :

Traverse speed

μ :

Friction coefficient

P :

Pressure

R :

Shoulder radius

ω :

Rotation speed

ΔN :

Increment of cycle numbers

Δa :

Increment of crack length

N i :

Cycle numbers

N f :

Cycle numbers of total fatigue life

a :

Surface crack length

a i :

Surface crack length at Ni cycles

ΔK :

Stress intensity factor range

area :

Projected area of the crack

σ max :

Maximum stress

σ min :

Minimum stress

Δσ :

Stress range

References

  1. Mastanaiah P, Sharma A, Reddy GM (2016) Dissimilar friction stir welds in AA2219-AA5083 aluminium alloys: effect of process parameters on material inter-mixing, defect formation, and mechanical properties. T Indian I Metals 69(7):1397–1415

    Article  CAS  Google Scholar 

  2. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1–2):1–78

    Article  Google Scholar 

  3. Tarasov SY, Rubtsov VE, Fortuna SV, Eliseev AA, Chumaevsky AV, Kalashnikova TA, Kolubaev EA Ultrasonic-assisted aging in friction stir welding on Al-Cu-Li-Mg aluminum alloy. Weld World 61(4):679–690

  4. Venkateswaran P, Reynolds AP (2012) Factors affecting the properties of friction stir welds between aluminum and magnesium alloys. Mater Sci Eng A 545:26–37

    Article  CAS  Google Scholar 

  5. Shokri V, Sadeghi A, Sadeghi MH (2017) Effect of friction stir welding parameters on microstructure and mechanical properties of DSS–Cu joints. Mater Sci Eng A 693:111–120

    Article  CAS  Google Scholar 

  6. Aval HJ (2015) Microstructure and residual stress distributions in friction stir welding of dissimilar aluminium alloys. Mater Design 87:405–413

    Article  Google Scholar 

  7. da Silva AAM, Arruti E, Janeiro G, Aldanondo E, Alvarez P, Echeverria A (2011) Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds. Mater Design 32:2021–2027

    Article  Google Scholar 

  8. Khodir SA, Shibayanagi T (2008) Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys. Mater Sci Eng B 148(1–3):82–87

    Article  CAS  Google Scholar 

  9. Cavaliere P, Panella F (2008) Effect of tool position on the fatigue properties of dissimilar 2024-7075 sheets joined by friction stir welding. J Mater Process Technol 206(1–3):249–255

    Article  CAS  Google Scholar 

  10. Cavaliere P, De Santis A, Panella F, Squillace A (2009) Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by friction stir welding. Mater Design 30(3):609–616

    Article  CAS  Google Scholar 

  11. Miller KJ (1987) The behaviour of short fatigue cracks and their initiation. 2. A general summary. Fatigue Fract Eng Mater Struct 10(2):93–113

    Article  Google Scholar 

  12. Besel Y, Besel M, Mercado UA, Kakiuchi T, Hirata T, Uematsu Y (2017) Influence of local fatigue damage evolution on crack initiation behavior in a friction stir welded Al-Mg-Sc alloy. Int J Fatigue 99:151–162

    Article  CAS  Google Scholar 

  13. Deng CY, Gao R, Gong BM, Yin TH, Liu Y (2017) Correlation between micro-mechanical property and very high cycle fatigue (VHCF) crack initiation in friction stir welds of 7050 aluminum alloy. Int J Fatigue 104:283–292

    Article  Google Scholar 

  14. Rodriguez RI, Jordon JB, Allison PG, Rushing T, Garcia L (2016) Low-cycle fatigue of dissimilar friction stir welded aluminum alloys. Mater Sci Eng A 654:236–248

    Article  CAS  Google Scholar 

  15. Jordon JB, Bernard JD, Newman JC (2012) Quantifying microstructurally small fatigue crack growth in an aluminum alloy using a silicon-rubber replica method. Int J Fatigue 36(1):206–210

    Article  CAS  Google Scholar 

  16. Brochu M, Verreman Y, Ajersch F, Bouchard D (2012) Propagation of short fatigue cracks in permanent and semi-solid mold 357 aluminum alloy. Int J Fatigue 36(1):120–129

    Article  CAS  Google Scholar 

  17. Kim YG, Fujii H, Tsumura T, Komazaki T, Nakata K (2006) Three defect types in friction stir welding of aluminum die casting alloy. Mater Sci Eng A 415(1–2):250–254

    Article  Google Scholar 

  18. Trimble D, O’Donnell GE, Monaghan J (2015) Characterization of tool shape and rotational speed for increased speed during friction stir welding of AA2024-T3. J Manuf Process 17:141–150

    Article  Google Scholar 

  19. Oskouei RH, Ibrahim RN (2011) The effect of a heat treatment on improving the fatigue properties of aluminium alloy 7075-T6 coated with TiN by PVD. Procedia Engineering 10:1936–1942

    Article  CAS  Google Scholar 

  20. Prudhomme M, Billy F, Alexis J (2018) Effect of actual and accelerated ageing on microstructure evolution and mechanical properties of a 2024-T351 aluminium alloy. Int J Fatigue 107:60–71

    Article  CAS  Google Scholar 

  21. Yan L, Fan JK (2016) In-situ SEM study of fatigue crack initiation and propagation behavior in 2524 aluminum alloy. Mater Design 110:592–601

    Article  CAS  Google Scholar 

  22. Alexandre F, Deyber S, Pineau A (2004) Modeling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites. Scr Mater 50:25–30

    Article  CAS  Google Scholar 

  23. Tan JT, Chen BK (2013) Coalescence and growth of two coplanar short cracks in AA7050-T7451 aluminium alloys. Eng Fract Mech 102:324–333

    Article  Google Scholar 

  24. Guan J, Wang LQ, Zhang CW, Ma XX (2017) Effects of non-metallic inclusions on the crack propagation in bearing steel. Tribol Int 106:123–131

    Article  CAS  Google Scholar 

  25. Murakami Y, Endo M (1986) Effects of hardness and crack geometry ofΔKthof small cracks. J Soc Mater Sci Jpn 35(395):911–917

    Article  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 11672010, 51535001, 51575012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qin Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XIII - Fatigue of Welded Components and Structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, GQ., Xu, GS., Shang, DG. et al. Welding parameter selection and short fatigue crack growth of dissimilar aluminum alloy friction stir welded joint. Weld World 63, 1761–1769 (2019). https://doi.org/10.1007/s40194-019-00773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-019-00773-6

Keywords

Navigation